• Литература к главе 3
  • Глава 3. Технологии

    В развитии общественного производства можно выделить три составляющие – машинизация, технологизация, индустриализация[23] .

    ? Индустриализация — это глобальная тенденция создания целостных человеко-машинных производств, которым присущ современный технологический уровень, в любой сфере общественного развития. В направлении создания таких производств развивается любая часть национального производства – промышленная, образовательная, научная, управленческая, проектная и т.д. Индустриализация усилилась в материальных сферах производства и стала принципиально осуществимой в нематериальных (и неэнергетических) сферах производства с появлением возможностей массового применения вычислительных машин и оргтехники для переработки информации в любой сфере человеческой деятельности.

    В процессе индустриализации определенного вида человеческой деятельности можно выделить три составные части создания человеко-машинного производства: а) машинизация — создание и использование специализированных машин; б) технологизация — создание и реализация человеко-машинных технологий; в) координация — создание и реализация человеко-машинных производств.

    Системная технология является основой для практики системной индустриализации общественного производства. Системная индустриализация – это тенденция создания таких человеко-машинных производств, которым присущи системность построения и высокий технологический уровень. Системная индустрия – необходимая основа системного развития для любой сферы общественного развития – промышленной, образовательной, научной, управленческой, проектной и т.д.

    Системная технология использует опыт промышленных и энергетических производств, которые основаны на классических принципах непрерывности, параллельности, пропорциональности, ритмичности, а также специализации, комбинирования, кооперирования, концентрации производства и др. Но при этом системная технология позволяет избегать ошибок промышленной и энергетической индустриализации, приведших к крупномасштабным и трудноразрешимым экологическим проблемам.

    Рассмотрим три составные части системной индустриализации: а) системная машинизация — создание и использование систем машин в процессе машинизации; б) системная технологизация — создание и реализация человеко-машинных системных технологий и, на их основе, целостных технологических систем; в) системная координация — создание и реализация производственной системы, как целостной совокупности технологических и экономико-административных систем[24] .

    Системная машинизация предполагает, что машины для определенного вида общественного производства или для преобразования определенного вида ресурса должны создаваться как целостные системы машин. Далее, предполагается, что к машинам предъявляется комплекс, целостная система требований и для их выработки необходим анализ процессов переработки ресурсов, характерных для данного вида человеческой деятельности. Такой анализ проводится на основе комплекса целостных моделей рассматриваемой деятельности, напр., образовательной, как комплекса моделей больших и сложных систем.

    В общем случае, системная технология машинизации определенного вида человеческой деятельности основывается на применении целостных системных моделей трех объектов: системы процессов, системы требований к машинам, системы машин. В совокупности эти модели образуют некоторую системную триаду моделей «процессы-требования-машины». Использование данной триады позволяет отслеживать и координировать процессы создания, использования и замены парка машин фирмы, организации или соответствующей отрасли (сферы) общественного производства в целом.

    Основа системной машинизации – метод системной технологии.

    Системная технологизация объединяет человека и машину, приводя к созданию целостных технологических человеко-машинных систем и их комплексов для преобразования не только материальных, но и человеческих, природных, информационных и др. видов ресурсов.

    Как известно, процессы творчества массово невыполнимы в том смысле, что они не могут многократно выполняться для тиражирования одного и того же изделия. В отличие от них, технологии – это процессы, которые создаются, по замыслу конструктора и технолога, как многократно выполнимые совокупности простых операций изготовления одинаковых изделий. Простота операции в данной технологии для человека обеспечивается, в частности, тем, что сложные и громоздкие физические, механические, химические, информационные, управленческие и другие процессы «поручаются» машине.

    Системная технология рассматривает вопросы технологизации на новом системном уровне, что дает возможность построения более совершенных технологий – системных технологий, и превращения данного вида деятельности в целостную системную деятельность: системная экология, системное образование и т.д.

    Системная технологизация основывается на методе системной технологии.

    Системная координация осуществляется на основе метода системной технологии и комплекса прикладных системных технологий для создания и реализации производственных систем, как целостных совокупностей технологических и экономико-административных систем.

    ? Ключевым для успешной индустриализации является Закон технологизации, впервые сформулированный автором в 1987 г.[25] :

    Для удовлетворения потребностей человека и общ ества необходима технологизация, т.е. преобразование процессов творчества, доступного единицам, в технологии, доступные всем и обладающие свойствами массовости, определенности, результативности, посредством создания и реализации технологических систем.

    Основным инструментом реализации Закона технологизации является метод системной технологии.

    ? Перейдем к изучению основных принципов осуществления технологий. Технологии осуществляются посредством различных орудий труда, в т.ч. и посредством машины. Технологии, в т.ч. и технологии производства машин, состоят из отдельных операций. При осуществлении материальных технологий должны быть реализованы ряд известных принципов, которые можно сформулировать следующим образом[26] .

    1) Качественное расчленение и количественная пропорциональность процессов (принцип пропорциональности). Принцип пропорциональности в простейшем случае можно выразить следующим образом: число рабочих на операциях должно быть пропорционально трудоемкости обработки изделия. Данный принцип требует такого построения технологии, которое обеспечивало бы прохождение через операции технологического процесса за определенный отрезок времени одинакового количества каждого вида изделия.

    2) Постоянство и равенство затрат времени на производство каждой единицы данной продукции (принцип ритмичности). Для того, чтобы обеспечить постоянство результатов технологии, необходимо идентичное повторение каждой операции за одно и то же время при производстве каждой следующей единицы продукции. При этом условии одинаковые изделия могут быть получены за равные промежутки времени.

    3) Одновременность осуществления операций (п ринцип параллел ьности). В технологиях необходимо находить и распределять между различными рабочими местами операции, которые можно совершать одновременно (параллельно). В результате возникают параллельные цепи (циклы) технологий.

    4) Непрерывность комплекса технологий (принцип непрерывности). При построении комплекса технологий необходимо находить такие структуры, при которых обеспечивается минимум ожидания предмета труда перед каждой последующей операцией комплекса технологий.

    ? Этапы развития технологии можно рассматривать, как этапы закономерной передачи функций человека машинам. Начальные стадии – «ремесло для себя» (домашний труд, в том числе, нетоварный), «ремесло на заказ» (ремесленные мастерские, напр.). Затем возникли мануфактурное производство, промышленные технологии (конвейерные, поточные и др.), современные технологии (основанные на комплексах машин).

    В современных промышленных технологиях машине передаются не только функции, связанные непосредственно с преобразованием предмета труда, но и функции, связанные с управлением производством. На производстве машине поручается не только физический, но и интеллектуальный труд.

    В свою очередь, способность машины выполнять интеллектуальный труд приводит к возможностям применения законов построения материальных технологий для производства «интеллектуальных» изделий: управленческих решений, проектов, изобретений и другого «интеллектуального» продукта.

    Другими словами, если человек в настоящее время при производстве своей интеллектуальной продукции по уровню технологий находится на стадиях «ремесло для себя» и «ремесло на заказ», то в дальнейшем он может резко повысить производительность и продуктивность своей интеллектуальной деятельности за счет перехода на новые уровни взаимодействия с машинами с помощью системной технологии.

    Это многократно доказано опытом применения системной технологии. В прежние времена возможности машин отставали от потребностей преобразования ресурсов (что, кстати, сохраняется во многих видах материального производства и в нынешнее время). Сейчас возможности вычислительных машин, средств коммуникации и оргтехники во многом превосходят возможности переработки информации-сведений и информации-знаний, которые имеют «интеллектуальные трудящиеся». Такое превосходство уже очевидно для управления, образования, науки, экологии, экспертизы, социальной и других нематериальных сфер труда.

    ? Эти проблемы решает системная технология. Для построения конкретных технологий во всех сферах общественного производства системная технология использует и такие широко применяемые методы совершенствования технологий, как:

    – переход от прерывистых технологий к непрерывным,

    – внедрение «замкнутых» (безотходных) технологий,

    – повышение съема продукции с каждой единицы площади и объема технологического оборудования,

    – увеличение интенсивности технологий,

    – снижение ресурсоемкости (материалоемкости, металлоемкости и т.п.),

    – снижение трудозатрат,

    – увеличение мощности аппаратов и др.

    Всех уже перечисленных тенденций, условий, принципов недостаточно, чтобы создавать системные технологии деятельности на современном уровне. Поэтому далее проведен анализ современных особенностей технологических систем и сформулирован ряд принципов, которые позволяют разрешать проблему целостности деятельности на практике и в теории.

    ? Технологический процесс, как уже отмечалось, это процесс переработки предмета труда с целью получения новых свойств, формы, состояния. Эти новые свойства, форма, состояние воплощаются в конечном продукте, создание которого является целью собственно технологического процесса. Предмет труда — некоторая совокупность ресурсов. Совокупность ресурсов перед поступлением на технологический процесс – входящий поток, после переработки – выходной поток, в том числе – готовая продукция. Для технологических процессов промышленного производства предметом переработки являются материальные ресурсы. В настоящее время, как уже отмечалось, термин «технология» широко применяется и к переработке информационных, человеческих, энергетических и других видов ресурсов.

    Цель – придание предмету труда нового состояния реализуется в многочисленных металлургических процессах. Пример – технологические процессы производства титана, в результате осуществления которых титан переходит из связанного состояния, в котором он находится в двуокиси титана, в свободное. Надо сказать, что в процессе производства титан, как и многие другие металлы, переходит в промежуточное состояние. Например, при магниетермическом восстановлении титан из двуокиси переходит в четыреххлористый титан. Здесь изменяется не только химическое, но и физическое состояние: из твердого состояния (двуокись титана) предмет труда переводится в парообразное (четыреххлористый титан).

    Многочисленные технологические процессы имеют своей целью придание предмету труда определенной формы. Так, в технологических процессах подготовки шихты на металлургических заводах целью является выработка шихты в виде гранул определенного размера. Наряду с этим необходимо обеспечить и требуемый состав компонентов (или групп компонентов). В процессах шихтоподготовки могут происходить последовательные изменения состояния предмета труда: жидкая пульпа, поступившая с обогатительной фабрики или образованная из привозных концентратов, смешивается с другими компонентами, сгущается, фильтруется, сушится и переводится в твердое состояние. Цель – придание предмету труда определенной формы, преследуется при токарной, фрезерной и др. механической обработке металлов, при изготовлении швейных изделий, продуктов хлебопекарной промышленности и в других процессах.

    При переработке полиметаллических руд на обогатительных фабриках цель – придание предмету труда нового свойства, заключающегося в обеспечении повышенного уровня содержания полезных компонентов в концентрате, достаточного для эффективного протекания металлургических процессов по выделению этих компонентов из концентрата. Процесс достижения этой цели разделяется на ряд подпроцессов, объединяемых сложной системой материальных потоков. В этих подпроцессах (дробления, измельчения, флотации, сгущения, фильтрации, сушки) происходят изменения физического состояния предмета труда (из твердой в жидкую и, затем, из жидкой в твердую) и изменения формы (руда дробится и измельчается до заданного гранулометрического состава).

    Цели – придание предмету труда новых свойств, служат, например, технологические процессы крашения и отделки в производствах легкой промышленности. Целями здесь могут быть удаление естественных примесей, обеспечение равномерной по всему объему влажности, придание нужного цвета, обеспечение прочности, минимальной сминаемости и т.д.

    ? Цели, для достижения которых осуществляются технологические процессы, можно разделить на основные (конечные), промежуточные и сопутствующие.

    Система основных целей технологического процесса составлена, как правило, заранее, при создании процесса. Так, в систему основных целей металлургического процесса выплавки металла может входить обеспечение максимального содержания полезного компонента в основном материальном потоке или минимального его содержания в отходах, производительность процессов или себестоимость продукции и др.

    Промежуточные цели возникают на каждом этапе, на каждой стадии технологического процесса: при щелочной пропитке хлопчатобумажной ткани – деминерализация, при расшлихтовке ткани – снятие шлихты (крахмала), при хлорировании двуокиси титана – получение четыреххлористого титана и т.д.

    Сопутствующие цели – цели, появляющиеся в связи с тем, что после отдельных технологических стадий и операций могут появиться нежелательные побочные эффекты, либо результаты этих стадий нужны только для одной-двух последующих стадий, а для всех последующих неэкономичны, неэффективны, вредны. Например, при мерсеризации хлопчатобумажное полотно обрабатывается едким натром, в результате полотно приобретает повышенную прочность и способность к глубокому и быстрому окрашиванию. Но после окончания мерсеризации едкий натр с полотна надо удалить, так как на любой следующей стадии его присутствие нежелательно. Появляется промежуточная стадия – промывка, осуществляемая с целью – удалить остатки едкого натра с полотна.

    На систему целей технологического процесса, как процесса достижения цели, влияет, таким образом, выбранный способ осуществления процесса.

    ? Рассмотрим далее технологический процесс как процесс в некоторой технологической системе.

    Любой технологический процесс состоит из трех видов процессов: транспортирование, складирование и целенаправленная переработка ресурса.

    Это разделение очевидно из рассмотрения любого технологического процесса.

    Например, в красильно-отделочном производстве полотно (хлопчатобумажное, трикотажное и др.) складируется перед поступлением на крашение или отделку, затем выборочно транспортируется в соответствии с заданным графиком крашения и окраски, далее взаимодействует в красильных аппаратах и линиях с химикатами и красителями, после чего вновь транспортируется, складируется и т.д.

    Руды цветных и черных металлов разных месторождений транспортируются к обогатительным и металлургическим производствам, складируются, затем вновь транспортируются к машинам и агрегатам, смешиваются, подвергаются агломерации, плавке, другим видам переработки. В механических производствах заготовки деталей из склада транспортируются к станкам, проходят обработку (токарную, фрезерную или др.), складируются, транспортируются к новой обработке (покраска, сборка и т.п.) и т.д.

    В целом, комплексы технологических процессов общественного производства образуют сложную сеть, элементарными компонентами которой являются складирование, транспортирование, переработка.

    Из этих трех типовых компонентов основными компонентами, из которых составляются собственно технологические процессы, являются процессы переработки, в результате осуществления которых перерабатываемый материальный ресурс, как предмет труда, под целенаправленным воздействием приобретает новые свойства, форму, состояние.

    ? Надо заметить, что изменение свойств, формы, состояния преобразуемых ресурсов происходит не только в процессе целенаправленной переработки, но и при транспортировании и складировании. Эти преобразования являются нецеленаправленными, в большинстве случаев вредными, учитываются при проектировании самих технологических процессов, как приводящие к непроизводительным расходам и потерям.

    В тоже время и в самих процессах переработки также происходит транспортирование и складирование предмета труда. Так, в процессе агломерации руд металлов концентрат движется с помощью транспортерной ленты в рабочей зоне агломерационной машины, в процессах крашения хлопчатобумажное полотно движется последовательно через рабочую зону различных аппаратов, отлеживается (складируется) в джейбоксах и т.д. Можно привести много примеров и из области переработки информационного, человеческого, энергетического и др. видов ресурсов, из которых явствует, что процессам переработки (взаимодействия) сопутствуют процессы транспортирования и складирования и наоборот.

    Необходимо отметить, что при создании и реализации комплексов технологических процессов вопросам улучшения процессов целенаправленной переработки уделяется значительно большее внимание, нежели совершенствованию транспортирования и складирования. Это зачастую приводит к большим непредвиденным потерям полезных компонентов в потоках преобразуемых ресурсов. Характерны, в данном случае, процессы выработки, транспортирования, складирования сельскохозяйственной продукции, овощей, картофеля, процессы выработки, хранения и транспортирования управленческой информации.

    Проведенный анализ показывает, что все три типа процессов – переработка, транспортирование, складирование, содержатся в качестве элементов в каждом процессе переработки любого вида ресурса и неравнозначное отношение к этим процессам приводит к необратимым потерям на пути от исходного сырья (руда, сельхозпродукция, комплексы знаний и умений обучаемых, исходная информация перед началом делового совещания и др.) к конечному продукту (рафинированный металл, мясные изделия, знания и умения обученных специалистов, решение совещания и др.), к его низкому качеству и неприемлемости для потребителя.

    Уже упоминавшийся принцип непрерывности тесно связан с тем обстоятельством, что любой технологический процесс состоит из трех основных элементарных процессов: переработки, транспортирования, складирования.

    Принцип непрерывности требует, по своей сути, осуществления технологического процесса с минимально возможными перерывами в переработке, т.е. с минимальными затратами на транспортирование и складирование.

    ? Сформулируем теперь наиболее общее определение технологического процесса, используемое как основа составления общей математической модели целостной технологии[27] .

    Технологический процесс – это множество эл ементарных процессов переработки, т.е. целенаправленных процессов преобразования предмета труда, и элементарных взаимодействий двух видов – транспортирование и складирование предмета труда.

    Множество элементарных процессов переработки создается с целью придания материальному (человеческому, информационному, энергетическому и т.д.) продукту переработки (продукту труда) желаемых свойств, формы, состояния.

    Элементарные процессы транспортирования предназначены для осуществления взаимодействия элементарных процессов переработки в пространстве. Это, напр., передача информации по каналам связи, передача энергии по линиям электропередачи, передача звуковой информации от педагога к слушателю, перевозка сельхозпродукции от поля к месту переработки и т.д.

    Элементарные процессы складирования предназначены для осуществления взаимодействия во времени. Это, напр., хранение информации в банках данных, хранение деталей и запчастей на складах и т.д.

    Принцип непрерывности в системной трактовке должен осуществляться сведением к минимуму затрат времени и ресурсов на осуществление этих взаимодействий.

    ? Перейдем к рассмотрению других (кроме уже рассмотренных принципов непрерывности и др.) условий, которые должны соблюдаться при осуществлении технологических процессов.

    Одним из главных условий, обеспечивающих заданное протекание технологического процесса, является условие соблюдения технологической дисциплины. Режимы технологических процессов регламентируются технологической документацией (маршрутные карты, операционные карты и т.д.), составляемой при разработке системы технологической подготовки производства.

    Технологическая дисциплина заключается, таким образом, в обеспечении соответствия хода технологического процесса регламентирующей технологической документации.

    ? Характерной для технологических процессов является стадиальность — разделение на процессы, стадии, связанное с тем обстоятельством, что получение выходного продукта производства из исходных материалов, сырья, комплектующих, изделий, полуфабрикатов и т.п. возможно, как правило, путем постепенного (от операции к операции – в машиностроении, от реакции к реакции в химии и т.д.) изменения свойств, формы, состояния обрабатываемого продукта.

    Наличие стадиальности технологических процессов приводит к тому, что появляется, как правило, возможность выполнять определенные стадии, операции, фазы процесса последовательно. При этом оказывается, что каждая стадия «посильна» одному человеку или группе людей с соответствующей оснащенностью машинами. Некоторые цепочки последовательных стадий могут осуществляться параллельно друг другу, в соответствии с принципом параллельности, упоминавшимся ранее. В тоже время стадиальность технологических процессов является одним из следствий соблюдения принципов пропорций и ритмичности.

    Однако соблюдение принципов параллельности, непрерывности, пропорциональности и ритмичности недостаточно для эффективного осуществления стадиальности процессов, так как эти принципы не связаны с понятием целесообразности технологии. С этой позиции необходима формулировка еще одного принципа – принципа обогащения, ранее предложенного и описанного автором в ряде работ[28] .

    Принцип обогащения заключается в том, что при последовательном прохождении через стадии, циклы и операции технологических процессов исходный продукт теряет «ненужные» (мешающие достижению цели технологического процесса) и обогащается «нужными» (в смысле цели технологического процесса) заданными качествами, формой, состоянием.

    Так, руда какого-либо месторождения, содержащая нужный металл, предварительно обогащается на обогатительных фабриках, где проходит ряд процессов, облегчающих последующую выплавку металла. В технологии производства металла руда избавляется, в частности от вредных примесей (напр., серы), плавится, затем металл очищается, рафинируется.

    Заготовка детали машины или прибора, прежде чем попасть на окончательную обработку на станке с целью придания необходимой формы и размеров, проходит черновую обработку. По сути на черновой обработке она «обогащается», постепенно освобождаясь от ненужных свойств и постепенно приобретая полезные заданные параметры.

    Окрашиваемая хлопчатобумажная ткань проходит через процессы и стадии промывки, обработки химикатами, затем красится, освобождаясь от «мешающих» и приобретая заданные потребительские свойства.

    ? Современные технологические процессы могут быть перестроены, напр., при изменении ассортимента выпускаемой продукции. Необходимость в перестройке процесса возникает, напр., при изменении номенклатуры измерительных приборов на приборостроительном заводе, ассортимента тканей и их расцветки на отделочном производстве легкой промышленности, при значительном изменении состава сырья в горно-обогатительных производствах и др. При таких перестройках может изменяться последовательность фаз технологического процесса, что приводит к изменениям в структуре технологической системы.

    ? Важным принципом, который надо учитывать при создании и осуществлении технологического процесса является технологичность выходной продукции.

    Это требование обеспечения такой совокупности свойств выходной продукции, которая обеспечивает оптимальные, в смысле какого либо критерия, затраты ресурсов при создании и осуществлении технологического процесса. При этом необходимо сравнение с соответствующими показателями однотипных видов продукции и обеспечение установленных показателей качества и условий осуществления процесса.

    Иными словами, свойства, форма, состояние намечаемой к выпуску продукции должны обеспечить более эффективное использование ресурсов производства для достижения поставленной цели, нежели другие однотипные виды продукции.

    ? Одним из основных условий эффективного осуществления технологического процесса является оценка качества и эффективности процесса. В соответствии с установленной системой показателей качества производится контроль на соответствие заданным показателям не только выходной продукции, но и входной продукции (входной контроль) и продукции каждого подпроцесса, передела, операции, перехода и т.д.

    С целью обеспечения соответствия выпускаемой продукции заданным показателям качества функционирует, как правило, система контроля и управления качеством, осуществляемая специальными службами. Ход технологического процесса в промышленности также контролируется соответствующими подразделениями.

    ? Обязательным при создании технологических процессов является применение типовых технологических процессов. Типизация должна «устранять многообразие технологических процессов обоснованным сведением их к ограниченному числу типовых» и является базой для создания стандартов на типовые технологические процессы[29] .

    ? Современной тенденцией является стремление к созданию максимально (полностью) механизированных, автоматизированных, роботизированных технологических процессов.

    ? Одно из наиболее перспективных направлений совершенствования технологических процессов заключается в создании и использовании гибких автоматизированных систем. В таких системах может эффективно реализовываться способность технологических процессов перестраиваться при частом изменении конструкций и свойств выпускаемых изделий.

    Применение промышленных роботов может решать проблемы комплексной автоматизации на основе применения типовых роботизированных комплексов. Важнейшей неотъемлемой частью современных производств стали автоматизированные системы управления, являющиеся одним из решающих факторов повышения производительности и эффективности технологических процессов.

    ? Целью современных методов проектирования технологического процесса является создание оптимального технологического процесса с известными оптимальными режимами осуществления. При успешном решении этой задачи управление технологическим процессом сводится к стабилизации расчетных режимов.

    ? В ходе управления технологическим процессом возникают задачи корректировки заданных режимов по разным причинам: старение оборудование, влияние сезонных атмосферных условий, существенное изменение характеристик сырья, материалов, полуфабрикатов, комплектующих изделий и т.д. В этом случае производится расчет новых оптимальных режимов и переход на новые режимы стабилизации технологического процесса. Для цели корректировки и расчета режимов при оперативном управлении технологическим процессом используют различные методы моделирования технологических процессов.

    Управление, основанное на стабилизации расчетных оптимальных режимов, наиболее желательно с точки зрения согласованного управления комплексами технологических процессов не только на одном предприятии, но и на ряде предприятий, производства которых образуют последовательную цепочку.

    ? Во многих случаях технологические процессы на разных предприятиях (нередко -разных отраслей) образуют процесс, который можно назвать «сквозным», учитывая то, что такой процесс проходит через несколько производственных систем.

    Так, сквозной технологический процесс образуют процессы добычи руды на горнообогатительном комбинате, выплавки стали соответствующей марки и проката стального листа на металлургическом производстве, изготовления кузовов для автомобилей в автомобильной промышленности. Материальный ресурс, переходя из одной производственной системы в другую, качественно преобразуется в различных по характеру технологических процессах.

    Таким образом, можно отметить, что, в отличие от многих других видов процессов общественного производства, в технологических процессах имеет место преемственность по материальным потокам. Преемственность по материальным потокам характерна и для всех стадий и переделов любого отдельно взятого комплекса технологических процессов.

    ? В тоже время известно, что материальные потоки в любой современной технологии многокомпонентны. Максимальное извлечение полезных компонентов, свойств, формы – одна из наиболее насущных задач управления технологическими процессами. В этой связи важно соблюдение баланса компонентов, составляющих материальный ресурс. Иными словами, суммарное количество каждого компонента на всех входах и суммарное же количество этого же компонента на всех выходах технологического процесса (комплекса технологических процессов) должны быть равны.

    Особенно важно соблюдение баланса компонентов в сложных комплексах непрерывных технологических процессов металлургических, нефтехимических и других производств, где возможны неконтролируемые притоки и расходы текучих сред (атмосферного воздуха, пара и т.д.). Естественно, что сбалансированность материальных потоков должна обеспечиваться не только по компонентам, но и в целом по потокам ресурса между отдельными процессами. При таком условии становится, например, бессмысленным оптимальное управление каким-либо одним из процессов, входящих в технологических комплекс, приводящее, например, к повышению производительности этого процесса, если его производительность не сбалансирована с возможностями переработки или потребления в следующем по цепочке процессе.

    Возможно, что более разумным явится в таких условиях соблюдение баланса по потокам материального ресурса. Задача оптимально сбалансированного управления комплексом процессов может быть сформулирована так: найти оптимальную (например, по минимуму себестоимости) совокупность расходов ресурсов, обеспечивающую заданные уровни производительности каждого процесса, сбалансированные по всей цепочке технологических комплексов.

    Такая «технологическая» постановка, во всяком случае, больше отвечает принципам системности, чем традиционная, целью которой является максимизация или минимизация какого-либо показателя технологического процесса (производительности, например); в традиционной постановке нарушения сбалансированности материальных потоков естественны.

    Необходимо, конечно, отметить, что в данном разделе изложены только наиболее существенные, описанные в трудах автора, особенности осуществления технологических процессов.

    Существуют также другие различные особенности и тенденции.

    ? Среди различных тенденций развития технологических процессов материального производства мы должны отметить одну из наиболее существенных. Это тенденция к созданию малооперационных и малостадийных технологических процессов, приходящая на смену традиционным способам разделения процесса труда, выделения, механизации и автоматизации отдельных операций[30] .

    В черной металлургии – это процессы прямого восстановления железа, минуя доменный процесс, в цветной металлургии – автогенные процессы, плавка в жидкой ванне, в угольной промышленности – гидродобыча угля, в легкой промышленности – технология производства нетканных материалов и т.д.

    Эти и другие тенденции реализуются тремя основными принципами развития современных технологических процессов[31] :

    1) Развитие и совершенствование методов ведения классической технологии. Содержание – «улучшение известной продукции, известного процесса».

    2) Поиск новых, прогрессивных технологических процессов для выпуска прежней продукции. Содержание – «улучшение известной продукции, применение нового процесса».

    3) Создание новых технологических процессов в связи с появлением новых видов продукции. Содержание – «выпуск новой продукции, применение нового процесса».

    ? Перейдем к изучению технологических структур, во-первых, как системных структур, во-вторых, как структур, создаваемых для обеспечения хода технологического процесса.

    Как системная структура, технологическая структура — это множество взаимодействующих элементов (элементов технологической структуры) и элементов взаимодействия между ними.

    Элемент технологической структуры обеспечивает реализацию элементарного процесса переработки, т.е. элементарного процесса изменения свойств, формы, состояния предмета труда.

    Одни элементарные процессы реализуются вручную людьми (например, присоединение элементов электрических схем прибора путем пайки, установка и крепление резьбовыми соединениями деталей приборов, машин, аппаратов). Другие элементарные процессы – людьми с помощью механизмов, роботов, автоматов (например, автоматизированная сборка механических часов, механическая обработка деталей на станках с ЧПУ). Третьи элементарные процессы осуществляются в аппаратах, машинах, агрегатах без непосредственного воздействия человека на предмет труда (обогащение руд цветных металлов во флотомашинах, крашение тканей в красильных аппаратах, получение серной кислоты в контактных аппаратах, жидкостная обработка кож в деревянных барабанах).

    Таким образом, возможны три вида элементов технологических систем: «человек», «человек-машина», «машина». Заметим, что управление этими процессами также может осуществляться человеком, машиной, либо человеко-машиной системой.

    Элементы взаимодействия обеспечивают пространственно-временное взаимодействие между элементами технологической структуры, т.е. обеспечивают выполнение комплекса операций складирования и транспортирования перерабатываемого материального ресурса.

    Основным требованием к элементам взаимодействия технологических структур – элементам технологического транспорт и складов, является требование обеспечения неизменности свойств, формы, состояния предмета труда в процессе транспортирования и складирования. Кроме того, добавляются и другие требования, например, обеспечение сохранности количеств транспортируемых и складируемых материальных ресурсов и др.

    В целом транспорт и склад, как часть технологической структуры, должны обеспечивать пространственно-временное взаимодействие элементарных процессов в технологической системе.

    Все эти требования накладывают жесткие ограничения на совместное функционирование элементов взаимодействия технологических структур и элементов технологических структур.

    Технологическая структура в целом создается, в первую очередь, для обеспечения заданного хода технологического процесса, как процесса достижения цели.

    ? Мы проанализируем дополнительно некоторые аспекты, общие для всех технологических структур.

    Технологические структуры должны быть однозначными, т.е. должны однозначно обеспечивать заданное течение технологического процесса. Однозначность структуры технологической системы означает обеспечение целенаправленных преобразований и пространственных перемещений перерабатываемого ресурса без отклонений от заданной схемы.

    В тоже время важной особенностью технологических структур является гибкость, способность перестраиваться при введении каких-либо изменений в регламент технологического процесса.

    Одной из существенных особенностей технологических структур является применение типовых, унифицированных, стандартизированных конструкций машин, аппаратов, приборов, агрегатов. Применяемые в современных технологических структурах машины, аппараты, агрегаты для реализации процессов переработки, а также транспорт и склады должны в максимальной степени быть построены на типовых решениях.

    Важным требованием к элементам технологических структур является необходимость оснащения контрольно-измерительной аппаратурой, средствами автоматического контроля и управления.

    Элементы технологических структур и по производительности и по объемам перерабатываемых потоков должны быть сбалансированы — это одно из условий, предупреждающих появление так называемых “узких” мест.

    Совершенно необходимым является выполнение требований, связанных со способностью машин, аппаратов, агрегатов, транспорта, складов обеспечивать минимум потерь материальных ресурсов при переработке, складировании, транспортировании. Это требование, наряду с целями экономии ресурсов, преследует цели исключения загрязнения окружающей среды.

    Тенденции развития технологических структур можно так же, как и для процессов[32] , свести к трем основным:

    1) развитие и совершенствование технологических структур и их элементов для классической технологии. Содержание – “улучшение известного процесса, улучшение известной структуры”.

    2) поиск новых, прогрессивных вариантов технологических структур, конструкций их элементов для реализации классической технологии. Содержание – ”улучшение известного процесса, применение новой структуры”.

    3) создание новых технологических структур для реализации нового технологического процесса. Содержание – “применение нового процесса, реализация новой структуры”.

    ? В соответствии с ранее принятым здесь определением технологический процесс – это множество элементарных процессов переработки, т.е. целенаправленных процессов преобразования предмета труда, и элементарных взаимодействий двух видов – транспортирование и складирование предмета труда.

    Используя это определение, а также проведенный анализ особенностей технологий, можно определить, что модель технологической системы должна состоять из следующих множеств:

    первое – множество технологических элементов системы, т.е. людей, машин, аппаратов, агрегатов, станков и т.п., которые осуществляют элементарные процессы целенаправленного преобразования предмета труда;

    второе – множество элементов взаимодействия, т.е. машин, аппаратов, оборудования и механизмов транспорта и складов, которые обеспечивают взаимодействия технологических элементов;

    третье – множество элементарных процессов ц еленаправленного преобразования, на каждом из которых происходят изменения свойств, формы, состояния перерабатываемого предмета труда;

    четвертое – множество элементарных процессов транспортирования и складирования, характеризующих динамику пространственно-временных перемещений предмета труда между элементарными процессами переработки.

    Модель процесса технологической системы — это множество элементарных процессов переработки, транспортирования и складирования.

    Модель структуры технологической системы — это множество людей, технологического, транспортного и складского оборудования, машин, агрегатов, аппаратов.

    Модель основной технологической системы включает в себя множества технологических элементов системы и взаимодействий между ними.

    При моделировании технологии система, дополнительная к основной технологической, рассматривается как система, включающая в себя множество транспортного и складского оборудования (машин, агрегатов, механизмов и т.п.) и элементарные процессы технологической переработки, причем эти процессы рассматриваются здесь, только как процессы, обеспечивающие взаимодействие между элементами множества транспортного и складского оборудования машин и др.

    ? При рассмотрении общей задачи создания и развития полной технологической системы целесообразно разделить ее на две группы задач, связанных в системном плане: задачи основной технологической и дополнительной транспортно-складской систем. Порядок решения задач зависит от многих причин, они могут решаться последовательно, параллельно, либо может существовать более сложный циклический порядок. Естественно, что модели элементов полной технологической системы будут различными, в зависимости от того, какую группу задач мы рассматриваем. Модели элементов и процессов, которые ими осуществляются, будут зависеть от того, в рамках какой системы мы их рассматриваем: основной или дополнительной.

    Технологическая система, создаваемая для изготовления определенного изделия, входит в некоторый технологический комплекс, включающий кроме нее, вспомогательные технологические системы. Такими системами являются, например, системы энергообеспечения, системы ремонта и восстановления оборудования, системы приготовления, дозирования и раздачи химикатов и красителей и другие.

    Развитие технологических систем можно описать в виде основных тенденций для технологических процессов и структур с наложением условия сбалансированного развития основной технологической и дополнительной транспортно-складской систем. Кроме того, одной из основных тенденций развития технологических систем является тенденция к снижению удельного веса транспортно – складской системы, к созданию непрерывных систем с минимальными затратами времени и средств на переход от операции к операции.

    ? В связи с этим можно качественно обобщить основные тенденции развития технологической системы, создаваемой для реализации технологического процесса, следующим образом:

    1) Улучшение технологических систем и их элементов для реализации известных целей. Содержание – «улучшение известных систем для известных целей».

    2) Улучшение технологических систем и их элементов для реализации качественно новых целей. Содержание – «улучшение известных систем для новых целей».

    3) Создание новых технологических систем и их элементов для реализации качественно новых целей. Содержание – «создание новых систем для новых целей».

    Управление развитием технологических систем должно включать две основные группы задач:

    1) Управление проектами создания новых систем и их построение в рамках одной из этих тенденций развития.

    2) Управление проектами реструктуризации имеющихся систем и поддержание их в конкурентоспособном состоянии.

    В управлении проектами технологических систем, можно выделить три основных этапа:

    а) определение элементов полной технологической системы, которая состоит из множества взаимодействующих элементов, элементарных процессов переработки, элементов взаимодействия и элементарных взаимодействий.

    б) проектирование и конструирование основной технологической системы, которая представляет собой множество технологических элементов системы и элементов взаимодействия между ними. На этом этапе наряду с решением комплекса других вопросов, связанных с реализацией процесса и структуры системы, должны быть поставлены требования к функционированию транспорта и складов.

    в) проектирование и конструирование транспортно-складской системы. Ее элементами являются транспортные и складские единицы, а также элементарные процессы переработки. Основным содержанием этого этапа является решение всего комплекса вопросов по созданию транспортных и складских элементов системы, причем элементы основной структуры здесь могут рассматриваться только как создающие определенные временные задержки и формирующие те характеристики предмета труда, которые представляют интерес с точки зрения транспортировки и складирования.

    Этот подход заключается в поочередном рассмотрении элементов основной (перерабатывающей) и дополнительной (транспортно-складской) систем, причем, если проектируется одна из них, то другая система учитывается набором устанавливаемых ограничений на функционирование ее элементов.

    ? Здесь мы изучили ряд важнейших особенностей осуществления технологий, на основе которых автором были сформированы следующие 14 Принципов развития целостного метода системной технологии[33] :

    1) Принцип однозначного соответствия «цель – процесс – структура»:

    В технологической системе для достижения цели изготовления каждого изделия должен реализовываться строго соответствующий ему процесс, осущ ествляемый с помощью четко определенной структуры; технологическая система описывается множеством таких соответствий, как предусмотренных при ее создании, так и возникших в процессе развития.

    2) Принцип гибкости:

    технологическая система должна уметь оперативно перестраиваться, т.е. при необходимости переходить с одного соответствия «цель – процесс – структура» на другое с минимальными затратами ресурсов.

    3) Принцип неухудшающего взаимодействия:

    транспортно-складские взаимодействия внутри систем и между системами во времени и в пространстве не должны ухудшать параметры ресурсов и изделий или могут ухудшать их в заданных пределах.

    4) Принцип технологической дисциплины:

    во-первых, должен иметь место регламент функционирования технологической системы для каждого соответствия «цель-процесс-структура», во-вторых, должен осуществляться контроль над соблюдением технологического регламента и, в-третьих, должна существовать система внесения изменений в технологический регламент.

    5) Принцип обогащения:

    каждый элемент технологической системы (как и вся система) должен придавать новые полезные свойства (и/или форму и/или состояние) преобразуемому ресурсу (предмету труда) для обеспечения процесса изготовления системой заданного изделия.

    6) Принцип оценки качества:

    Является обязательным установление критериев и оценка по ним качества реализации каждого соответствия «цель – процесс – структура» как для технологической системы в целом, так и для всех ее элементов; оценка качества может проводиться для изделий системы и изделий ее подсистем, для процессов системы в целом и процессов ее подсистем, для структур системы в целом и структур ее подсистем.

    7) Принцип технологичности:

    из всех видов изделий, отвечающих поставленной цели, должно выбираться наиболее «технологичное», т.е. обеспечивающее наиболее эффективную реализацию соответствия «цель-процесс-структура» в данной технологической системе.

    8) Принцип типизации:

    многообразие соответствий «цель-процесс-структура» в технологической системе и многообразие изделий, технологических процессов, структур и систем должны быть сведены в технологических комплексах к ограниченному числу типовых, обоснованно отличающихся друг от друга.

    9) Принцип стабилизации:

    необходимо находить и обеспечивать стабильность таких режимов всех процессов и таких состояний всех структур технологической системы, которые обеспечивают наиболее эффективное использование преобразуемых ресурсов для качественного изготовления каждого изделия системы.

    10) Принцип высвобождения человека:

    за счет реализации технологических систем машинами механизмами, роботами, автоматами высвобождать человека для интеллектуальной деятельности.

    11) Принцип преемственности:

    изделия каждой технологической системы должны обязательно потребляться внешней средой с такой же скоростью, с которой они производятся.

    12) Принцип баланса:

    суммарное количество каждого известного компонента любого ресурса, потребляемого технологической системой за определенное время, должно быть равно суммарному количеству этого компонента, поступающего за это же время от технологической системы во внешнюю среду. Это относится к технологической системе в целом, ее частям и элементам.

    13) Принцип экологичности:

    воздействие технологических, социальных и природных систем друг на друга должно приводить к устойчивому прогрессивному развитию каждого вида этих систем и их совокупности.

    14) Принцип согласованного развития:

    развитие системы и ее компонент (элементов, структур, процессов) должно соответствовать эволюции целей внешней среды, для достижения которых нужны изделия системы; развитие систем должно основываться на управлении проектами систем.

    Принципы системной технологии в комплексе с классическими принципами непрерывности, параллельности, ритмичности и пропорциональности, а также кооперации, специализации и концентрации производства – основа для качественной оценки соответствия модели развивающейся системы эталону целостной технологической системы и для дальнейшего решения задач развития системной технологии производства.

    ? Изучение особенностей технологий позволило автору также сформулировать следующие Законы развития.

    Закон индустриализации. Развитие человеческой деятельности осуществляется путем индустриализации, которая заключается в создании целостных человеко-машинных производств.

    В направлении создания таких производств развивается любая человеческая деятельность – промышленная, образовательная, научная, управленческая, информационная, энергетическая, проектная, глобальная, региональная, страновая и т.д.

    Закон машинизации. Специализированные машины для индустриализации определенного вида человеческой деятельности или для преобразования определенного вида ресурса должны создаваться как целостные системы машин.

    Закон технологизации. Для удовлетворения потребностей человека и общества необходима технологизация, т.е. преобразование процессов творчества, доступного единицам, в технологии, доступные всем и обладающие свойствами массовости, определенности, результативности, посредством создания и реализации целостных технологических систем.

    ? Изучение особенностей технологий, полезных с позиций формирования прикладных разделов целостного метода системной технологии, рекомендуется продолжить на практических занятиях, при выполнении самостоятельных работ по следующим темам:

    1) разработка принципов системного изделия;

    2) формальное математическое описание каждого из принципов; видимо, каждый из принципов должен содержать основную теорему, устанавливающую истинность некоторой формулы прикладного исчисления предикатов (главных или дополнительных), записанной в пренексном виде; кроме этого, каждый из принципов может содержать некоторую формальную процедуру его применения;

    3) составление формальной схемы применения комплекса принципов системной технологии для различных сфер деятельности;

    4) дополнение принципов системной технологии. Предлагается, например, разработка «принципа резонанса», основанного на явлении резонанса, известном и используемом в электромагнитных и электронных системах, а также, в последнее время, и в создании технологических машин и оборудования, при изучении свойств воды, биологических структур и технологий;

    5) технологические системы, как это установлено для систем в общем, создаются для достижения определенных целей, которые могут также достигаться процессами или структурами систем. Предлагается подтвердить или опровергнуть данный тезис и описать соответствующие примеры.

    Литература к главе 3

    1. Большая советская энциклопедия, третье издание. Изд. «Советская энциклопедия», 1969 – 1978 г.г.

    2. Синягов А.А. Социально-экономические аспекты развития новой техники. М.: Мысль, 1982, 281 с.

    3. ГОСТ СССР 14. 303-73.

    4. Мучник В.С. Комплексный эффект технологических преобразований. Новосибирск, «ЭКО», 1982, №12.

    5. Шаумян Г.А. Комплексная автоматизация производственных процессов. М: Машиностроение, 1973, 673 с.

    6. Телемтаев М.М. Исследование аналитической модели организационно-технических систем (системная технология). В кн.: “Вопросы кибернетики”, под ред. Р.М.Суслова и А.П.Реутова; М.: изд. н/с “Кибернетика” АН СССР, 1980, ВК-72, с.124-136.

    7. Телемтаев М.М. Системная технология (основные задачи, принципы и правила разработки). – Вестник АН КазССР, Алма-Ата,1987, № 1, с.46-52.

    8. Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: Каз-НИИНТИ (деп. рук. № 1715), 1987, 82с.

    9. Телемтаев М.М. Алгебраическая модель технологической системы. Киев.: журн. АН СССР “Электронное моделирование”, 1990, т.12, №4, стр. 3-8.


    Примечания:



    2

    Из жизни терминов. Журнал “Наука и жизнь” , 1986, N 4, с. 69



    3

    Новый словотолкователь. Сост. Н.М. Яновский. СПБ, 1806г.



    23

    Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук. № 1715), 1987, 82с.



    24

    Там же



    25

    Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук. № 1715), 1987, 82с.



    26

    Синягов А.А. Социально-экономические аспекты развития новой техники. М.: Мысль, 1982, 281 с.



    27

    Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук. № 1715), 1987, 82с.

    Телемтаев М.М. Алгебраическая модель технологической системы. Киев.: журн. АН СССР “Электронное моделирование”, 1990, т.12, №4, стр. 3-8.



    28

    Телемтаев М.М. Исследование аналитической модели организационно-технических систем (системная технология). В кн.: “Вопросы кибернетики”, под ред. Р.М.Суслова и А.П.Реутова; М.: изд. н/с “Кибернетика” АН СССР, 1980, ВК-72, с.124-136.

    Телемтаев М.М. Системная технология (основные задачи, принципы и правила разработки). – Вестник АН КазССР, Алма-Ата,1987, № 1, с.46-52.

    Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук. № 1715), 1987, 82с.



    29

    ГОСТ СССР 14. 303-73.



    30

    Мучник В.С. Комплексный эффект технологических преобразований. Новосибирск, «ЭКО», 1982, №12.



    31

    Шаумян Г.А. Комплексная автоматизация производственных процессов. М: Машиностроение, 1973, 673 с.



    32

    Шаумян Г.А. Комплексная автоматизация производственных процессов. М: Машиностроение, 1973, 673 с.



    33

    Телемтаев М.М. Исследование аналитической модели организационно-технических систем (системная технология). В кн.: “Вопросы кибернетики”, под ред. Р.М.Суслова и А.П.Реутова; М.: изд. н/с “Кибернетика” АН СССР, 1980, ВК-72, с.124-136.

    Телемтаев М.М. Системная технология (основные задачи, принципы и правила разработки). – Вестник АН КазССР, Алма-Ата,1987, № 1, с.46-52.

    Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук. № 1715), 1987, 82с.







     

    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх