• 6.1. Ввод новых утверждений
  • 6.2. Выполнение и невыполнение целевого утверждения
  • 6.3. Классификация термов
  • 6.4. Работа с утверждениями как с термами
  • 6.5. Создание структур и работа с компонентами структур
  • 6.6. Воздействие на процесс возврата
  • 6.7. Формирование составных целевых утверждений
  • 6.8. Равенство
  • 6.9. Ввод и вывод данных
  • 6.10. Обработка файлов
  • 6.11. Вычисление арифметических выражений
  • 6.12. Сравнение чисел
  • 6.13. Наблюдение за выполнением программы на Прологе
  • ГЛАВА 6. ВСТРОЕННЫЕ ПРЕДИКАТЫ

    В этой главе будут описаны некоторые встроенные предикаты, которые может обеспечивать Пролог-система. Что имеется в виду, когда мы говорим, что предикат является встроенным? Это значит, что определение этого предиката уже имеется в Пролог-системе и нет необходимости иметь собственное его описание. Встроенные предикаты предоставляют возможности, которые нельзя реализовать с помощью описаний на чистом Прологе. Они также могут предоставлять удобные средства, избавляя программиста от необходимости самому определять эти предикаты. В действительности мы уже встречались с некоторыми встроенными предикатами – это предикаты для ввода и вывода, обсуждавшиеся в гл. 5. Оператор «отсечения» тоже можно рассматривать как встроенный предикат.

    Предикаты для ввода-вывода показывают, что встроенные предикаты могут иметь «побочные эффекты». Это значит, что при доказательстве согласованности целевого утверждения, содержащего такой предикат, помимо конкретизации аргументов предиката могут возникнуть дополнительные изменения. Это, естественно, не может случиться с предикатами, определенными на чистом Прологе. Другой важный факт, касающийся встроенных предикатов, состоит в том, что они могут быть определены только для аргументов конкретного вида. Например, рассмотрим предикат '‹' определенный таким образом, что Х‹Y выполняется, если число X меньше, чем число Y. Подобное отношение не может быть определено в Прологе без помощи посторонних средств, использующих некоторые знания о числах. Таким образом,  – это встроенный предикат, а его определение использует некоторые операции вычислительной машины, на которой реализована Пролог-система, для определения относительной величины чисел (представленных в виде двоичного кода или каким-либо иным способом).

    Что произойдет, если мы используем в качестве целевого утверждения предикат X‹Y, где X является атомом или даже более того, если как X, так и Y неконкретизированы? Определение предиката, данное на машинном языке, окажется просто неприменимым. Поэтому мы должны оговорить, что предикат X‹Y может быть использован в качестве целевого утверждения, если на момент, когда делается попытка выполнить его, обе переменные X и Y имеют в качестве значений числа. Что произойдет в случае, когда это условие не выполняется, зависит от конкретной реализации Пролог-системы. Возможно, доказательство согласованности такого целевого утверждения просто закончится неудачей. А может быть, будет напечатано сообщение об ошибке и система выполнит ряд действий, соответствующих этой ситуации (подобных прекращению попыток ответить на текущий вопрос).

    6.1. Ввод новых утверждений

    Когда вы пишете программу на Прологе, вам следует сообщить системе, какие утверждения нужно использовать, и затем задавать относительно них вопросы. Возможно, вы захотите вводить утверждения с терминала или захотите указать Пролог-системе приготовленный вами заранее файл, откуда следует брать утверждения. В действительности обе эти операции с точки зрения Пролога одинаковы, так как терминал рассматривается как файл, имеющий имя user. Имеются два основных встроенных предиката для ввода новых утверждений: consult и reconsult. Кроме того, в языке существует удобная форма записи на случай, когда вы захотите ввести утверждения сразу из нескольких файлов,- так называемая списковая форма записи. Для тех, кому это интересно, укажем, что в разд. 7.13 приведены простые определения на Прологе предикатов consult и reconsult.

    consult(X)

    Встроенный предикат consult предназначен для использования в тех ситуациях, когда вы хотите добавить утверждения из некоторого файла /или вводимые с терминала) к утверждениям, уже имеющимся в базе данных. Аргумент предиката должен быть атомом, указывающим имя файла, из которого должны браться утверждения. Какие литеры составляют допустимое имя файла, естественно, зависит от конкретной, используемой вами ЭВМ. Ниже приведены примеры возможной записи целевого утверждения с предикатом consult на различных ЭВМ:


    ?- consult(myfile).

    ?- consult('/us/gris/pl/chat').

    ?- consult('lib:iorout.pl'),


    В случае когда Пролог должен доказать согласованность целевого утверждения consult, он просматривает файл, добавляя утверждения, которые он обнаруживает, в конец базы данных. В результате новые утверждения будут помещены после всех уже имевшихся утверждений для тех же предикатов. Если в файле будет обнаружен вопрос, то он будет рассматриваться точно так же, как обычный вопрос, за тем исключением, что ответ не будет напечатан. Обычно не имеет смысла вставлять вопросы в файл с новыми утверждениями, за исключением тех случаев, когда необходимо сделать операции, подобные объявлению новых операторов и печати полезных сообщений.

    reconsult(X)

    Предикат reconsult аналогичен предикату consult, за исключением того, что вводимые утверждения заменяют все имеющиеся утверждения для того же самого предиката. Вследствие этого reconsult удобно использовать для исправления ошибок в программе. Если вы вводите некоторые файлы с утверждениями и затем обнаруживаете, что одно из утверждений содержит ошибку, то вы можете исправить ее, и для этого нет необходимости вводить заново все файлы. Чтобы сделать это, вам необходимо ввести с помощью reconsult файл, содержащий совокупность правильных утверждений для предиката, содержащего ошибку. Вы можете ввести исправления либо непосредственно с терминала (reconsult (user)), либо сначала отредактировать соответствующий файл, не выходя из Пролог-системы (такую возможность предоставляют не все реализации), и затем ввести этот файл с помощью reconsult. Конечно, при вводе исправленных утверждений с терминала содержание базы данных, с которой работает Пролог, изменится, но при этом исходный файл, содержащий первоначальные утверждения с ошибками, останется неизменным! В разд. 8.5 показано использование предикатов consult и reconsult в процессе разработки программы.

    Списковая форма записи

    Пролог предоставляет специальную форму записи, позволяющую более удобно задавать предикаты consult и reconsult в качестве целевых утверждений, особенно в случае, когда вы хотите ввести более чем один файл. Для этого достаточно просто записать совокупность имен файлов (как атомов Пролога) в виде списка и задать этот список в качестве целевого утверждения. Если вы хотите, чтобы содержимое файла было просто добавлено к базе данных (consult), то имя такого файла записывается в списке в том виде, как оно есть, если же вы хотите, чтобы при этом произошла замена уже имеющихся одинаковых предикатов (reconsult), то перед именем файла ставится знак '-' (минус). Так, например, вопрос


    ?- [файл1,-файл2,'фред.1',-'билл.2'].


    полностью эквивалентен следующему, но более длинному;


    ?- consult(файл1), reconsult(файл2), consult('фред:1'), reconsult('билл.2').


    Списковая форма сводится к удобству записи, она не дает каких-либо дополнительных возможностей по сравнению с использованием предикатов consult и reconsult. Некоторые реализации Пролога могут использовать в списковой форме записи вместо знака '-' какой-нибудь иной знак, но эффект при этом останется прежним.

    6.2. Выполнение и невыполнение целевого утверждения

    При нормальном выполнении программы на Прологе целевое утверждение считается согласованным (с базой данных), когда это может быть доказано, и несогласованным в случае, когда доказательства найти не удается. В языке имеются два предиката, позволяющих удобно и явным образом определить случаи, когда целевое утверждение считается согласованным и когда несогласованным. Это предикаты true и fail.

    true

    Это целевое утверждение всегда согласуется с базой данных. В действительности этот предикат не является необходимым, так как утверждения в базе данных и цели могут быть переупорядочены или перегруппированы так, чтобы избежать использования предиката true. Однако для удобства он входит в состав встроенных предикатов.

    fail

    Это целевое утверждение никогда не согласуется с базой данных. Имеются две ситуации, когда этот предикат оказывается полезным. Одна из них – это использование комбинации !- fail, которая уже была описана в разд. 4.3. Конъюнкция целевых утверждений


    …!, fail


    применяется для того, чтобы указать, что если процесс выполнения дошел до этого момента, то можно больше не пытаться доказать (согласовать) данное целевое утверждение. Конъюнкция считается несогласованной благодаря наличию предиката fail, а родительское целевое утверждение не согласуется ввиду того, что использовано отсечение.

    Другая ситуация, в которой используется предикат fail, возникает, когда вы хотите явно указать, что для некоторого целевого утверждения нужно перебрать все решения. Возможно, вы захотите напечатать все возможные решения. Например, выполнение целевого утверждения


    ?- событие (X,Y), phh(Y), fail.


    привело бы к печати всех событий, имеющихся в базе данных, рассмотренной в разд. 5.1, выбор событий и печать их краткого содержания выполняют предикаты событие и phh, при этом цель окажется несогласованной с базой данных. Еще одно применение fail рассмотрено в разд. 7.13 (в определении предиката retrac-tall).

    6.3. Классификация термов

    Если вам надо определить предикаты, которые будут использоваться с аргументами различных типов, то полезно иметь возможность выделять в определении предиката ситуации, соответствующие каждому из возможных типов. В простейшем случае может понадобиться применять разные утверждения в зависимости от того, является ли аргумент целым числом или атомом. Разные утверждения могут потребоваться и для конкретизированных и неконкретизированных аргументов. Приводимые ниже предикаты позволяют программисту включить в утверждения эти дополнительные условия.

    var(X)

    Целевое утверждение var(X) согласуется с базой данных, если на текущий момент X является неконкретизированной переменной. Таким образом, возможен следующий диалог:


    ?- var(X).

    да

    ?- var(23).

    нет

    ?- X = Y, Y = 23, var(X).

    нет


    Неконкретизированная переменная может представлять часть некоторой структуры, которая еще не полностью заполнена. Примерами могут служить неотмеченные клетки на доске для игры в крестики-нолики, рассмотренной в разд. 4.3.3, и незаполненные части упорядоченного дерева, представляющего словарь в разд. 7.1. При работе с такими структурами предикат var очень, полезен при определении, являются ли некоторые части структуры уже заполненными или нет. Это может предотвратить «случайную» конкретизацию переменной при попытке анализа ее значения. Например, при работе со словарем, представленным в виде упорядоченного дерева, может потребоваться узнать, имеется ли уже вход для некоторого ключа, не создавая такой вход в случае его отсутствия. При игре в крестики-нолики может возникнуть необходимость определить, занята или нет некоторая клетка. Попытка сопоставить неконкретизированную переменную с «о» или «х» привела бы просто к тому, что соответствующий символ был бы помещен в клетку, соответствующую переменной.

    nonvar(X)

    Целевое утверждение nonvar(X) согласуется с базой данных, если X на текущий момент не является неконкретизированной переменной. Предикат nonvar является, таким образом, противоположным по отношению к предикату var. Действительно, он может быть определен на Прологе следующим образом:


    nonvar(X):- var(X),!, fail.

    nonvar(_).


    atom(X)

    Целевое утверждение atom(X) согласуется с базой данных, если текущее значение X является атомом в смысле языка Пролог. Как следствие возможен следующий диалог:


    ?- atom(23).

    нет

    ?- atom(apples).

    да

    ?- atom('/us/qris/pl. 123').

    да

    ?- atom("этo строка").

    нет

    ?- atom(X).

    нет

    ?- atom(book(bronte,w_h,X)).

    нет


    integer(X)

    Целевое утверждение integer(X) согласуется с базой данных, если на текущий момент X обозначает целое число. Этот предикат можно использовать при определении простого предиката для упрощения арифметических выражений, где необходимо знать, является ли выражение целым числом (см., например, разд. 7.12).

    atomic(X)

    Целевое утверждение atomic(X) согласуется с базой данных, если на текущий момент X обозначает либо целое число, либо атом. Предикат atomic может быть определен через предикаты atom и integer следующим образом:


    atomic(X):- atom(X).

    atomic(X):- integer(X)

    6.4. Работа с утверждениями как с термами

    Пролог позволяет программисту анализировать и изменять свою программу (т. е. утверждения, которые используются для доказательства согласованности его целевых утверждений). Это непосредственно следует из того, что утверждения можно рассматривать как обычные структуры языка Пролог. В связи с этим в Прологе есть встроенные предикаты, позволяющие программисту следующее:

    • Создавать структуру, представляющую утверждения в базе данных.

    • Добавлять к базе данных утверждение, представленное заданной структурой.

    • Удалять из базы данных утверждение, представленное заданной структурой.

    Большинство операций над базой данных могут быть выполнены с помощью этих предикатов и обычных операций языка Пролог для конструирования и декомпозиции структур. В дополнение к приведенным здесь примерам в разд. 7.8 представлены некоторые способы использования данных предикатов для добавления и удаления утверждений.

    Прежде чем мы рассмотрим соответствующие предикаты, необходимо понять, как утверждения Пролога могут быть представлены в виде структур. Для простого факта такой структурой является соответствующий ему предикат с аргументами. То есть факт, подобный


    нравится(джон,Х)


    может рассматриваться как обычная структура с функтором нравится (имеющим два аргумента) и аргументами джон и X. С другой стороны, правило можно рассматривать как структуру с главным функтором ':-'(с двумя аргументами). Этот функтор объявлен как инфиксный оператор. Первым аргументом является заголовок утверждения, а вторым – его тело. Так что


    нравится(джон, X):- нравится(Х,вино)


    есть не что иное, как


    ':-' (нравится(джон,Х), нравится(Х,вино))


    – совершенно обычная структура. Далее, если правило содержит более одного целевого утверждения, то они считаются объединенными в структуры с функтором ',' (с двумя аргументами). Этот предикат также объявлен как инфиксный оператор. Так что


    прародитель(Х, Z):- родитель(Х, Y), родитель(Y,Z)


    есть в действительности просто


    ':-'(прародитель(Х,Z),Y(родитель(Х,Y),родитель(Y, Z))


    Далее приведены предикаты, позволяющие программисту анализировать и изменять его утверждения.


    listing (A)

    Выполнение целевого утверждения listing(A), когда значением А является атом, приводит к тому, что все утверждения, предикат которых совпадает с этим атомом, будут записаны в виде термов Пролога в текущий файл вывода. Таким способом вы можете проверить, какие утверждения для некоторого предиката имеются в базе данных на текущий момент. Конкретный формат представления выводимых утверждений зависит от используемой вами реализации Пролог-системы. Заметим, что будут представлены все утверждения, предикат которых совпадает с атомом независимо от того, сколько аргументов они имеют. Использование предиката listing может помочь вам обнаружить ошибки в программе. Так, в приведенном далее примере сеанса работы с системой программист обнаруживает, что он неправильно определил предикат обр.


    ?- [test].

    test consulted

    да

    ?- обр([a,b,c,d],X).

    нет

    ?- listing(обр).

    обр([],[]).

    обр ([_44|_45],_38):-обр(_45,_47),присоединить(_47,[_44],_38).

    да


    Печать утверждений предиката обр показывает, что атом присоединить написан в программе с ошибкой.

    clause(X, Y)

    Выполнение целевого утверждения вида clause(X, Y) приводит к тому, что X и Y сопоставляются с заголовком и телом некоторого имеющегося в базе данных утверждения. При попытке выполнить указанное целевое утверждение переменная X должна быть до такой степени конкретизирована, чтобы был известен главный предикат утверждения. Если для данного предиката нет утверждений, то доказательство согласованности целевого утверждения заканчивается неудачей. Если имеется несколько утверждений, соответствующих предикату, то Пролог выбирает первое из них. В этом случае если предпринимается попытка вновь согласовать целевое утверждение, то будет выбрано следующее утверждение и так далее.

    Заметим, что в то время как предикат clause всегда имеет аргумент, соответствующий телу утверждения, далеко не каждое утверждение действительно имеет тело. Если утверждение не имеет тела, то считается, что оно имеет фиктивное тело true. Мы называли такие утверждения «фактами». В той или иной степени конкретизируя X и Y, можно искать либо все утверждения, соответствующие данному предикату с вполне определенным числом аргументов, либо все утверждения, соответствующие некоторому образцу. Так, например:


    присоединить([], X, X).

    присоединить([А|В]),С,[А|D]:- присоединить(В,С,D).

    ?- clause(присоединить(А,В,С),Y).

    А=[], В =_23, С=_23, Y = true;

    А = [_23|_24], В =_25, С = [_23|_26], Y = присоединить(_24,_25,_26);

    нет


    Предикат clause очень полезен в том случае, если нам надо создать программы, анализирующие или исполняющие другие программы (см. разд. 7.13).

    asserta(X), assertz(X)

    Два встроенных предиката asserta и assertz позволяют добавлять новые утверждения в базу данных. Оба предиката действуют в точности одинаковым образом, за тем исключением, что asserta добавляет утверждение в начало базы данных, в то время как assertz добавляет утверждение в ее конец. Это отличие можно легко запомнить, учитывая, что «а» является первой буквой английского алфавита, a «z» его последняя буква. При выполнении целевого утверждения asserta(X), X должно иметь значением нечто, что можно представлять как утверждение; действительно, как и в случае clause, X должно быть достаточно конкретизировано, чтобы можно было установить главный предикат. Необходимо подчеркнуть, что результат добавления в базу данных утверждения не устраняется при выполнении возврата. Следовательно, если мы использовали предикат asserta или assertz для того, чтобы добавить новое утверждение, то это утверждение может быть удалено только в случае, если мы явно укажем это (используя предикат retract).

    retract(X)

    Встроенный предикат retract позволяет удалять утверждения из базы данных. Этот предикат имеет один аргумент, представляющий терм, с которым должно быть сопоставлено удаляемое утверждение. Указанный терм должен быть достаточно конкретизирован, чтобы можно было определить предикат утверждения (аналогично предикатам asserta, clause и т. д.). При попытке выполнить целевое утверждение retract(X) находится первое утверждение в базе данных, с которым может быть сопоставлен X, и это утверждение удаляется. При попытке вновь выполнить это целевое утверждение Пролог просматривает базу данных, начиная с места удаленного утверждения, в попытке найти другое сопоставимое утверждение. Если такое утверждение находится, то выполняются действия, рассмотренные выше. Если делается новая попытка согласовать целевое утверждение, то продолжается поиск следующего подходящего утверждения. И так далее. Заметим, что если утверждение было удалено, то оно ни при каких условиях не будет восстановлено вновь, даже при попытке вновь выполнить предикат retract при возврате. Если в некоторый момент поиск не дает новых сопоставлений утверждений, то согласование целевого утверждения заканчивается неудачей.

    Так как аргумент X сопоставляется с удаляемым утверждением, то имеется возможность получить точное представление об удаляемом утверждении, даже если X исходно означал некоторую структуру, содержащую множество неконкретизированных переменных. Это позволяет использовать предикат retract вместо предиката clause, в ситуации когда найденное утверждение сразу же удаляется. Такая ситуация как раз имеет место в определении предиката генатом (разд. 7.8).

    6.5. Создание структур и работа с компонентами структур

    Обычно когда мы хотим задать в программе на Прологе операции со структурой определенного вида, то мы делаем это, «упоминая» некоторым образом подобную структуру. Это значит, что если предикат используется для обработки множества структур различного вида, передаваемых ему в качестве аргумента, то обычно мы обеспечиваем отдельное утверждение для каждого класса структур. Хорошим примером такого подхода является программа для символьного дифференцирования, которая будет рассмотрена в разд. 7.1. В этой программе используются отдельные утверждения для функторов +, -, * и так далее. Мы знаем заранее, какие структуры могут появиться, и обеспечиваем утверждения для каждой из них.

    В некоторых программах мы не можем предвидеть заранее все возможные структуры. Это имеет место, например, при написании программы «красивой печати», которая могла бы печатать произвольные структуры языка Пролог, размещая их в нескольких строках и используя отступы. (См. разд. 5.1, где представлена такая программа для печати списков.) Так, например, возможно, мы захотели бы напечатать терм

    книга(629,автор(бронте, эмили),вх)

    следующим образом:

    книга

     629

     автор

      бронте

      эмили

     вх

    Важным моментом является то, что мы хотим, чтобы эта программа работала правильно, какую бы структуру мы ей ни задали. Понятно, что одна из возможностей сделать это – обеспечить отдельное утверждение для каждого функтора, какой только можно представить. Но это работа, которую мы никогда не завершим, потому что существует бесконечно много различных функторов! Написать подобную программу можно, используя встроенные предикаты для работы со структурами произвольного вида. Здесь мы опишем некоторые из них – это предикаты functor, arg и '=..'. Мы опишем также предикат name, выполняющий операции над атомами.

    functor(T,F,N)

    Предикат functor определен таким образом, что functor(T,F,N) означает, что Тэто структура с функтором F, имеющим N аргументов. Этот предикат можно использовать двумя основными способами, В первом случае аргумент Т уже имеет значение. Целевое утверждение считается несогласованным с базой данных, если Т не является ни атомом, ни структурой. Если Т – это атом или структура, то F сопоставляется с функтором этой структуры, а N присваивается значение, равное числу аргументов функтора. Заметим, что в данном контексте считается, что атом – это структура с числом аргументов 0. Ниже приведено несколько примеров целевых утверждений с предикатом functor:


    ?- functor(f(a,b,g(Z)),F,N).

    Z = _23, F = f, N = 3

    ?- functor(a+b,F,N).

    F = +, N = 2

    ?- functor([a,b,c],F,N).

    F =., N = 2

    ?- functor(apple,F,N).

    F = apple, N = 0

    ?- functor([a,b,c],'.',3).

    нет

    ?- functor([a,b,c],a,Z).

    нет


    Прежде чем перейти к обсуждению предиката arg, следует рассмотреть второй способ использования предиката functor. В этом случае первый аргумент целевого утверждения functor (Т, F, N) неконкретизирован. В этом случае два других аргумента должны быть конкретизированы, однозначно определяя функтор и число аргументов соответственно. Целевое утверждение такого вида всегда согласуется с базой данных, и в результате значением Т становится структура с указанными функтором и числом аргументов. Таким образом, это некоторый способ создания произвольных структур по заданным функтору структуры и числу ее аргументов. Аргументами такой структуры, созданной с помощью предиката functor, являются неконкретизированные переменные. Следовательно, эта структура будет сопоставима с любой другой структурой, имеющей тот же функтор и одинаковое число аргументов.

    Предикат functor используется для создания структуры в основном тогда, когда нам надо получить «копию» некоторой уже существующей структуры с новыми переменными в качестве аргументов. Мы можем ввести для этого предикат копирование, использующий functor как целевое утверждение:


    копирование(Старая, Новая):- functor(Cтapaя,F,N), functor(Hoвaя,F,N).


    В этом определении подряд используются два целевых утверждения functor. Если целевое утверждение копирование имеет конкретизированный первый аргумент и неконкретизированный второй, то произойдет следующее. Первое целевое утверждение functor будет соответствовать первому способу использования этого предиката (так как первый аргумент этого предиката конкретизирован). Следовательно, F и N конкретизируются, получив в качестве значений функтор и число аргументов этой существующей структуры. Второе целевое утверждение functor соответствует второму способу использования этого предиката. На этот раз первый аргумент неконкретизирован, и информация, задаваемая F и N, используется для создания структуры Новая. Эта структура имеет те же функтор и число аргументов, что и Старая, но ее компонентами являются переменные. Таким образом, возможен следующий диалог:


    ?- копирование(sentence(np(n(john)), v(eats)),X).

    X = sentence(_23,_24)


    Мы используем подобную комбинацию целевых утверждений functor в определении предиката reconsult в разд. 7.13.

    arg(N,T,A)

    Предикат arg всегда должен использоваться с конкретизированными первым и вторым аргументами. Он применяется для доступа к конкретному аргументу структуры. Первый аргумент предиката arg определяет, какой аргумент структуры необходим. Второй аргумент определяет структуру, к аргументу которой необходим доступ. Пролог находит соответствующий аргумент и затем пытается сопоставить его с третьим аргументом предиката arg. Таким образом, цель arg(N,T,A) согласуется с базой данных, если N-й аргумент Т есть А. Давайте рассмотрим несколько целевых утверждений с arg.


    ?- аrg(2,отношение(джон,мать(джейн)),Х).

    X = мать(джейн)

    ?- arg(1,a+(b+c),X).

    X =а

    ?- arg(2,[a,b,c],X).

    X = [b,c]

    ?-arg(l,a+(b+c),b).

    нет


    Иногда мы захотим использовать предикаты functor и arg в ситуации, когда возможные структуры уже известны. Это связано с тем, что структура может иметь так много аргументов, что просто неудобно каждый раз перечислять их все. Рассмотрим пример, в котором структуры используются для описания книг. Мы могли бы иметь отдельную компоненту для названия книги, ее автора, издательства, года издания и так далее. Будем считать, что результирующая структура имеет четырнадцать компонент. Мы могли бы написать следующие полезные определения:


    является _ книгой(книга(_,_,_,_,_,_,_,_,_,_,_,_,_,_)).

    название(книга(Т,_,_,_,_,_,_,_,_,_,_,_,_,_),Т).

    автор(книга(_,А,_,_,_,_,_,_,_,_,_,_,_,_),А).

    . . .


    В действительности мы можем записать это значительно более компактно следующим образом:

    является_книгой(Х):- functor(X, книга, 14).

    название(Х,Т):- является_книгой(Х), arg(1,X,T).

    автор(Х,А):- является_книгой(Х), arg(2,X,T).

    . . .

    X=..L

    Предикаты functor и arg дают один из способов создания произвольных структур и доступа к их аргументам. Предикат «=..» предоставляет альтернативный способ, полезный в том случае, когда необходимо одновременно получить все аргументы структуры или создать структуру по заданному списку ее аргументов. Целевое утверждение X=..L означает, что L есть список, состоящий из функтора структуры X, за которым следуют аргументы X. Такое целевое утверждение может быть использовано двумя способами, так же как и целевое утверждение functor. Если X уже имеет значение, то Пролог создает соответствующий список и пытается сопоставить его с L. Напротив, если X неконкретизировано, то список будет использован для формирования соответствующей структуры, которая станет значением X. В этом случае голова списка должна быть атомом (этот атом станет функтором X). Ниже приведено несколько примеров целевых утверждений, содержащих =..:

    ?- имя(а,b,с) =.. X.

    X = [имя,а,b,с]

    ?- присоединить([А|В],С, [A|D]) =..L.

    A = _2, В = _3, С = _4, D = _5, L = [присоединить,[_2|_3],_4,[_2|_5]]

    ?- [a,b,c,d] =..L.

    L = ['.',a,[b,c,d]].

    ?- (a+b) =.. L.

    L = [+,a,b].

    ?- (a+b) =..

    [+,A,B] A = а, В = b

    ?- [a,b,c,d] =..

    [A|B] A = '.', В = [a,[b,c,d]]

    ?- X =.. [a,b,c,d]

    X = a(b,c,d).

    ?- X =.. [присоединить,[a,b,],[c],[a,b,c]].

    X = присоединить([а,b],[с],[а,b,с])

    Примеры использования предиката =.. приведены в разд. 7.12.

    name(А,L)

    В то время как предикаты functor, arg и =.. используются для формирования произвольных структур и доступа к их аргументам, предикат name используется для работы с произвольными атомами. Предикат name сопоставляет атому список литер (их ASCII кодов), из которых состоит этот атом. Данный предикат можно использовать как для определения литер, составляющих указанный атом, так и для определения атома, содержащего заданные литеры. Целевое утверждение name(A, L) означает, что литеры, образующие атом А, являются элементами списка L. Если аргументу А уже присвоено значение, то Пролог создает список литер и пытается сопоставить его с L. В противном случае Пролог использует список L для создания атома, который станет значением А. Приведем примеры использования предиката name:


    ?- name(apple,X).

    X = [97,112,112,108,100]

    ?- name(X,[97,l12,112,108,100]).

    X = apple

    ?- name(apple,"apple").

    да

    ?- name(apple,"pear").

    нет

    В разд. 9.5 предикат name используется для доступа к внутренней структуре слов английского языка, представляемых атомами Пролога.

    6.6. Воздействие на процесс возврата

    В Прологе есть два встроенных предиката, изменяющих нормальную последовательность событий, происходящих в процессе возврата. Предикат «!» устраняет возможности для повторного согласования целевых утверждений, а предикат repeat создает новые альтернативы там, где их не было ранее.

    Отсечение

    Символ отсечения ('!') можно рассматривать как встроенный предикат, который лишает Пролог-систему возможности изменить некоторые из решений, принятых ею ранее. Более подробное описание отсечения смотрите в гл. 4.

    repeat

    Встроенный предикат repeat обеспечивает дополнительную возможность для порождения множественных решений в процессе возврата. Хотя он и является встроенным, его поведение полностью соответствует следующему определению:


    repeat.

    repeat:- repeat.


    Что произойдет, если мы поместим предикат repeat как целевое утверждение в одно из наших правил?

    Во-первых, это целевое утверждение согласуется с базой данных, так как имеется соответствующий факт – первое утверждение определения предиката repeat. Во-вторых, если в процессе возврата вновь будет достигнуто это место, то Пролог будет иметь возможность испробовать альтернативу – правило (второе утверждение). При использовании правила порождается другое целевое утверждение repeat. Так как оно сопоставляется с фактом для предиката repeat, то это целевое утверждение вновь согласуется с базой данных. Если процесс возврата снова дойдет до этого места, то Пролог вновь использует правило там, где он ранее использовал факт. Чтобы доказать согласованность вновь порожденного целевого утверждения, он снова выберет факт. И так далее. В действительности в процессе возврата целевое утверждение repeat может быть согласовано бесконечное число раз. Обратим внимание на существенность порядка, в котором записаны утверждения для предиката repeat. (Что произойдет, если факт будет записан после правила?)

    Для чего нужно порождать целевые утверждения, которые всегда будут согласовываться в процессе возврата? Они нужны для того, чтобы создавать правила, в которых имеется возможность выбора вариантов, из правил, которые такой возможности не содержат. И тем самым мы можем заставить их порождать каждый раз различные значения.

    Рассмотрим встроенный предикат get0, который описан в гл. 5. Если Пролог пытается доказать согласованность целевого утверждения get0(X), то он понимает это как указание взять очередную литеру (букву, цифру, пробел или что-либо еще), которая была введена в систему, и попытаться сопоставить целочисленный код этой литеры со значением X. Если они будут сопоставимы, то целевое утверждение считается согласованным, в противном случае оно несогласовано. При этом нет никакого выбора – предикат get0 всегда обрабатывает только текущую литеру, введенную в систему в момент обращения к предикату. При следующем обращении к целевому утверждению, включающему get0, он возьмет следующую литеру, но при этом опять не будет никакого выбора. Мы можем определить новый предикат new_get следующим образом:


    new_get(X):- repeat, get0(X).


    Предикат new_get обладает следующим свойством: он порождает одно за одним значения всех последующих литер (в порядке их поступления) как альтернативные решения. Почему так получается? Когда мы первый раз вызываем new_get(X), то подцель repeat согласуется и подцель getO(X) тоже, при этом переменная X конкретизируется очередной литерой. Когда мы инициируем возврат, то выясняется, что последним местом, где имелся выбор, является repeat. Пролог забывает все, что было сделано с того момента, а повторное согласование целевого утверждения repeat успешно завершается. Теперь он вновь должен обратить свое внимание на getO(X). К этому моменту текущей литерой является следующая литера, и в результате X получает в качестве значения вторую литеру.

    Мы можем использовать наше определение new_get, чтобы определить другой полезный предикат. Предикат get обычно является встроенным. Когда Пролог обрабатывает целевое утверждение get(X), он рассматривает его как указание читать литеры до тех пор, пока он не найдет очередную неуправляющую литеру, имеющую изображение при печати (пробел, признак конца строки и т. д.). Затем он пытается сопоставить целочисленный код этой литеры со значением X. Мы можем написать приблизительное определение предиката get следующим образом:


    get(X):- new_get(X), X › 32.


    Чтобы понять это определение, нужно вспомнить, что в кодировке ASCII все неуправляющие (печатаемые) литеры имеют код, превышающий 32, все остальные литеры имеют код, меньший или равный 32. Что происходит при попытке согласовать get(X)? Прежде всего new_get(X) сопоставляет X с текущей литерой, введенной в систему. Если ее код меньше или равен 32, то следующее целевое утверждение неверно и new_get будет вынужден породить следующую литеру как следующее возможное решение. Эта литера будет затем сравнена с 32 и так далее. В конце концов new_get найдет неуправляющую литеру, сравнение закончится успешно и код этой литеры будет возвращен в качестве результата get.

    Упражнение 6.1. Приведенное определение предиката get не будет работать надлежащим образом, если мы обратимся к целевому утверждению get(X) с уже определенным значением X. Почему это происходит?

    Неприятность, связанная с предикатом repeat, состоит в том, что он всегда имеет альтернативное решение. Следовательно, в процессе возврата repeat никогда не будут пересмотрены решения, принятые раньше, чем произошел последний вызов repeat, если только мы не отсечем каким-либо образом эту постоянную возможность выбора. В силу сказанного предыдущие определения должны быть переписаны следующим образом:


    new_get(X):- repeat, get0(X).

    get(X):- new_get(X), X › 32,!.


    Заметим, что это определение по-прежнему работает, лишь если мы пытаемся согласовать get(X) с неконкретизированной значением переменной X. Из-за проблемы, связанной с механизмом возврата за repeat, в каждом применении new_get необходимо предусматривать отсечение дальнейших вариантов, как только порождается литера, удовлетворяющая заданным условиям.

    6.7. Формирование составных целевых утверждений

    В правилах и вопросах вида X:-Y или ?-Y терм, появляющийся на месте Y, может состоять из единственного целевого утверждения либо представлять конъюнкцию целевых утверждений или их дизъюнкцию. Более того, можно употреблять в качестве целевых утверждений переменные и успешно доказывать согласованность целевого утверждения, когда целевое утверждение в действительности не согласуется, используя для этого предикат not. Предикаты, представленные в этом разделе, позволяют реализовать эти сложные способы выражения целевых утверждений.

    Конъюнкция целей

    Функтор ',' (запятая) определяет конъюнкцию целевых утверждений. Этот функтор был введен в гл. 1. Если X и Y – целевые утверждения, то целевое утверждение X, Y согласуется с базой данных, если согласуется X и Y. Если X согласуется и затем Y не согласуется, то делается попытка найти новое доказательство согласованности для X. Если X не согласуется, то не согласуется и конъюнкция в целом. Это и составляет суть механизма возврата. Функтор Y является встроенным и определен как левоассоциативный инфиксный оператор, так что X, Y, Z эквивалентно (X,Y),Z.

    Дизъюнкция целей

    Функтор ';' определяет дизъюнкцию (означающую или) целевых утверждений. Если X и Y – целевые утверждения, то целевое утверждение X; Y согласуется с базой данных, если согласуется X или Y. Если X не согласуется, то делается попытка доказать согласованность Y. Если и Y не согласуется, то не согласуется и дизъюнкция в целом. Мы можем использовать функтор ';' для того, чтобы выразить альтернативы в пределах одного утверждения. Например, будем считать, что некоторый объект является человеком, если этот объект – либо Адам либо Ева или если у объекта есть мать. Мы можем выразить это в одном правиле следующим образом:


    человек(Х):- (Х=адам; Х = ева; мать(Х,Y)).


    В этом правиле мы в действительности определили три альтернативы. Однако для Пролога это правило содержит две альтернативы, одна из которых сама содержит две альтернативы. Так как функтор ';' является встроенным и определен как правоассоциативный инфиксный оператор, то целевое утверждение в приведенном правиле в действительности можно переписать следующим образом:


    ';' (Х = адам, ';'(Х=ева,мать(Х, Y)))


    Таким образом, первая возможность соответствует тому, что X – это адам. Вторая возможность включает две альтернативы: X это ева или у X есть мать

    Мы можем использовать дизъюнкцию в любом месте, где может быть использовано любое другое целевое утверждение на Прологе. Однако целесообразно использовать дополнительные скобки, чтобы избежать недоразумений, касающихся взаимодействия операторов ';' и ','. Обычно мы можем избежать применения дизъюнкции путем использования нескольких фактов и правил, содержащих, возможно, определения некоторых дополнительных предикатов. Например, приведенный выше пример в точности эквивалентен следующему:


    человек(адам).

    человек(ева).

    человек(Х):- мать(Х,Y).


    Этот вариант более традиционен и, возможно, проще для чтения. Для многих Пролог-систем он может быть более эффективным по сравнению с использованием ';'.

    Результатом отсечения является невозможность изменить выбор альтернатив, обусловленных наличием дизъюнкций, сделанный с момента сопоставления с правилом, содержащим отсечение (см. гл. 4). Вследствие этого имеется ряд случаев, когда программа, содержащая отсечения, не может быть преобразована в обычную программу без использования дизъюнкций. Однако в общем случае не рекомендуется чрезмерно часто использовать ';'. В качестве предостережения отсылаем вас к гл. 8, где показано, как необдуманное использование ';' затрудняет понимание программ.

    call(X)

    Предполагается, что X конкретизирован термом, который может быть интерпретирован как целевое утверждение. Целевое утверждение саll(X) считается согласованным, если попытка доказать согласованность X завершается успехом. Целевое утверждение call(X) не согласуется с базой данных, если попытка доказать согласованность X заканчивается неудачей. На первый взгляд этот предикат может показаться излишним, поскольку, естественно, возникает вопрос: почему аргумент call не может быть записан непосредственно как целевое утверждение? Например, целевое утверждение

    …, саll(принадлежит(а,Х)),…

    всегда может быть заменено следующим:

    …, принадлежит(a,X),…

    Однако если мы создаем целевые утверждения, используя предикат '=..' или ему подобные, то возможны обращения к целевым утверждениям, функторы которых неизвестны на момент ввода программы в Пролог-систему. Так, например, в определении предиката consult в разд. 7.13 нам надо иметь возможность рассматривать любой терм, прочитанный после ?-, как целевое утверждение. Предполагая, что Р, Х и Y конкретизированы функтором и аргументами соответственно, можно использовать call следующим образом:

    …, Z =… [P,X,Y], call(Z),…

    Последний фрагмент программы можно рассматривать как способ выражения обращения к целевому утверждению следующего вида:

    …, P(X,Y),…

    которое в рамках стандартной версии Пролога, рассматриваемой в этой книге, синтаксически некорректно. Однако некоторые версии языка Пролог допускают использование переменной в качестве функтора целевого утверждения.

    not(X)

    Предполагается, что X конкретизирован термом, который может быть интерпретирован как целевое утверждение. Целевое утверждение not(X) считается согласованным с базой данных, если попытка доказать согласованность X заканчивается неудачей. Целевое утверждение not(X) считается несогласованным, если попытка доказать согласованность X успешно завершается. В этом плане предикат not очень похож на call, за тем исключением, что согласованность или несогласованность аргумента, рассматриваемого как целевое утверждение, приводит к противоположному результату.

    Чем отличаются следующие два вопроса?


    /* 1 */?- принадлежит(Х,[а,b,с]), write(X).

    /* 2 */?- not(not(принадлежит(Х,[а,b,с]))), write(X).


    Может показаться, что между ними нет никакой разницы, так как в запросе 2 принадлежит(Х,[а,b,с,]) согласуется, поэтому not(принадлежит(Х,[а,b,с,])) не согласуется и not(not(принадлежит(Х,[а,b,с]))) согласуется. Это правильно лишь отчасти. В результате первого вопроса будет напечатан атом 'а', а в результате второго – неконкретизированная переменная. Рассмотрим, что происходит при попытке доказать согласованность первого целевого утверждения из второго вопроса:

    1. Целевое утверждение принадлежит согласуется, и X конкретизируется значением а.

    2 Предпринимается попытка доказать согласованность первого целевого утверждения not, которая заканчивается неудачей, так как целевое утверждение принадлежит, являющееся его аргументом, согласуется с базой данных. Теперь вспомним, что, когда целевое утверждение не согласуется, все конкретизированные переменные, такие как X в нашем примере, должны теперь «забыть», что они обозначали до сих пор. Следовательно, X становится неконкретизированной.

    3. Предпринимается попытка доказать второе целевое утверждение not, и эта попытка заканчивается успехом, так как его аргумент (not(принадлежит(…))) не согласован. Переменная X остается неконкретизированной.

    4. Предпринимается попытка выполнить целевое утверждение write с неконкретизированным значением X. И, как описано в разд. 6.9, неконкретизированные переменные печатаются специальным образом.

    6.8. Равенство

    В этом разделе коротко рассматриваются различные встроенные предикаты, используемые для проверки равенства элементов и позволяющие делать их равными.

    X=Y

    Когда Пролог встречает целевое утверждение X=Y, то он пытается сделать X и Y равными, сопоставляя их друг с другом. Если сопоставление возможно, то целевое утверждение считается согласованным (а X и Y, возможно, становятся более конкретизированными). В противном случае целевое утверждение считается несогласованным. Более полное обсуждение этого предиката приведено в разд. 2.4. Предикат равно определен таким образом, как если бы имел место факт

    X = X.

    Убедитесь, что вы понимаете, как это определение работает.

    X\=Y

    Предикат '\=' является противоположным по отношению к предикату '=' с точки зрения согласованности с базой данных. Это значит, что X\=Y согласовано, если X=Y не согласовано, и наоборот. Если целевое утверждение X\ = Y согласовано (X и Y не могут быть сопоставлены друг с другом), то не произойдет никаких изменений в конкретизации X и Y. Если бы '\=' не был встроенным предикатом, то мы могли бы определить его на Прологе следующим образом:


    X \= Y:- X = Y,!, fail. X \= Y.

    X==Y

    Предикат '==' выполняет значительно более строгую проверку на равенство, чем предикат '='. Это значит, что если X==Y выполняется, то и тем более выполняется X=Y. А обратное заключение не всегда имеет место. Отличие '==' состоит в том, что он более строг к переменным. Предикат '=' предполагает, что не-конкретизированная переменная может быть равна чему угодно, так как она сопоставима с чем угодно. С другой стороны, предикат '==' предполагает, что неконкретизированная переменная может быть равна другой неконкретизированной переменной, лишь когда они уже сцеплены друг с другом. Иначе проверка на равенство заканчивается неудачей. Таким образом, возможен следующий диалог:


    ?- X==Y.

    нет

    ?- X==X.

    X=_23

    ?- X = Y, X == Y. X = _23, Y = _23

    ?- присоединить([А|В],С) == присоединить(Х,Y).

    нет

    ?- присоединить ([А|В],С) == присоединить([А|В],С).

    А = _23, В = _24, С = _25

    Х \== Y

    Этот предикат находится в таком же отношении с '==' как '\=' с '='. Это значит, что целевое утверждение, содержащее этот предикат, согласуемо в точности тогда, когда целевое утверждение с '==' не согласуемо, и наоборот. И вновь мы могли бы считать, что этот предикат определен на Прологе следующим образом:

    Х\== Y:- X == Y,!, fail.

    Х\== Y.

    6.9. Ввод и вывод данных

    Предикаты для ввода и вывода литер и термов обсуждались в гл. 5. Здесь мы резюмируем наши знания о каждом из этих предикатов.

    get0(X)

    Это целевое утверждение согласуется с базой данных, если X может быть сопоставлена с очередной литерой в текущем входном потоке данных. Цель get0 выполняется лишь один раз (его нельзя согласовать повторно). Операция перехода к очередной литере не переделывается при возврате, так как не существует способа поместить литеру обратно в текущий входной поток данных.

    get(X)

    Это целевое утверждение согласуется с базой данных, если переменная X может быть сопоставлена с очередной печатаемой (неуправляющей) литерой в текущем входном потоке данных. Печатаемые литеры имеют код ASCII, превышающий 32. Все управляющие литеры пропускаются. Предикат get выполняется только один раз (он не может быть согласован вновь). Результат get не устраняется при возврате, так как нет способа поместить литеру обратно в текущий входной поток данных.

    skip(X)

    Этот предикат читает и пропускает литеры в текущем входном потоке данных до тех пор, пока не встретится литера, сопоставимая с X. Предикат skip выполняется только один раз.

    read(X)

    Этот предикат читает очередной терм из текущего входного потока данных и сопоставляет его с X. Предикат read выполняется только один раз. Вводимый терм должен заканчиваться точкой '.' которая не становится частью этого терма. После точки должна следовать по крайней мере одна управляющая литера. Точка удаляется из текущего входного потока данных.

    put(X)

    Этот предикат записывает целое число X в виде литеры (кодом которой и является X) в текущий выходной поток данных. Предикат put выполняется только один раз. Если X неконкретизирован, то фиксируется ошибка.

    nl

    Записывает в текущий выходной поток данных последовательность управляющих литер, вызывающую переход на «новую строку». В случае вывода на дисплей все литеры, выводимые после nl, будут размещены на следующей строке страницы; nl выполняется только один раз.

    tab(X)

    Записывает X «пробелов» в текущий выходной поток данных. Если X неконкретизирован, то фиксируется ошибка, tab выполняется только один раз.

    write(X)

    Этот предикат записывает терм X в текущий выходной поток данных, write выполняется только один раз. Каждая неконкретизированная переменная, входящая в X, записывается как уникальное имя, начинающееся с подчеркивания ('_'), за которым следует уникальное число, как, например, '_239'. Переменные, сцепленные в пределах одного аргумента предиката write, при печати будут иметь одинаковые имена. Предикат write учитывает при печати термов имеющиеся объявления операторов. Так, например, инфиксный оператор будет напечатан между своими аргументами.

    display(X)

    Предикат display работает в точности таким же способом, что и write, за тем исключением, что он игнорирует все объявления операторов. Предикат display печатает любую структуру, начиная с ее функтора, за которым в круглых скобках печатается список аргументов.

    op(X,Y,Z)

    Этот предикат объявляет оператор, имеющий приоритет X, позицию и ассоциативность Y и имя Z. Спецификация позиции и ассоциативности выбирается из числа следующих атомов:

    fx fy xf yf xfx xfy yfx yfy

    Если объявление оператора корректно, то op считается согласованным. Более подробно этот предикат описан в разд. 5.5.

    6.10. Обработка файлов

    Предикаты для изменения текущего входного и текущего выходного потоков данных были введены в гл. 5. Здесь мы резюмируем наши знания о каждом из этих предикатов.

    see(X)

    Этот предикат открывает файл X, если он еще не открыт, и определяет, что текущим входным потоком данных становится файл X. Если X неконкретизирована или X конкретизирована именем несуществующего файла, то фиксируется ошибка.

    seeing(X)

    Это целевое утверждение согласуется с базой данных, если имя текущего входного потока данных (файла) сопоставимо с X, и не согласуется в противном случае.

    seen

    Этот предикат закрывает текущий входной поток данных (файл) и определяет, что текущим входным потоком данных становится клавиатура терминала (user).

    tell(X)

    Этот предикат открывает файл X, если он еще не открыт, и определяет, что текущим выходным потоком данных, в который производится запись, является указанный файл. Если X неконкретизирована, то возникает ошибка. Если tell используется для. переключения выходного потока на еще неоткрытый файл и файл с именем, определяемым X не существует, то файл с таким именем создается. Иначе, если файл, определяемый X, уже существует, то предшествующее содержимое файла уничтожается.

    telling(X)

    Это целевое утверждение согласуется с базой данных, если X сопоставимо с именем текущего выходного потока данных, иначе оно не согласуется.

    told

    Этот предикат закрывает текущий выходной поток данных (файл) и записывает маркер конца файла в соответствующий файл. Текущим выходным потоком данных становится дисплей терминала (user).

    6.11. Вычисление арифметических выражений

    Арифметические возможности языка Пролог первоначально обсуждались в разд. 2.5. Здесь мы подытожим наши знания об использовании предиката 'is' и о том, какие имеются функторы для формирований арифметических выражений.

    X is Y

    Y должен быть конкретизирован структурой, которую можно интерпретировать как арифметическое выражение (см. разд. 2.4). Сначала вычисляется выражение, которым конкретизирован Y, и получается целое число, называемое результатом. Результат сопоставляется с X, и is считается согласованным или несогласованным в зависимости от исхода сопоставления. Ниже описываются функторы, которые могут быть использованы для построения структуры, расположенной справа от предиката is.

    X + Y

    Оператор сложения. При вычислении, инициированном предикатом is, результатом является арифметическая сумма его аргументов. Аргументы должны быть конкретизированы структурами, которые можно вычислить и получить в качестве результатов целые числа.

    X – Y

    Оператор вычитания. При вычислении, инициированном предикатом is, результатом является арифметическая разность его аргументов. Аргументы должны быть конкретизированы структурами, которые можно вычислить и получить в качестве результатов целые числа.

    X * Y

    Оператор умножения. При вычислении, инициированном предикатом is, его результатом является арифметическое произведение его аргументов. Аргументы должны быть конкретизированы структурами, которые можно вычислить и получить в качестве результатов целые числа.

    X / Y

    Оператор целочисленного деления. При вычислении, инициированном предикатом is, его результатом является целая часть частного от деления его аргументов. Аргументы должны быть конкретизированы структурами, которые можно вычислить и получить в качестве результатов целые числа.

    X mod Y

    Остаток от деления целых чисел (сравнение по модулю). При вычислении, инициированном предикатом is, его результатом является целочисленный остаток, получаемый при делении X на Y. Аргументы должны быть конкретизированы структурами, которые можно вычислить и получить в качестве результатов целые числа.

    Конкретные реализации Пролога могут включать и некоторые другие арифметические операции, такие, как возведение в степень. Примеры, приведенные в этой книге, используют лишь операции, перечисленные здесь.

    6.12. Сравнение чисел

    В Прологе имеются шесть предикатов для сравнения целых чисел. Эти предикаты первоначально были представлены в разд. 2.5, когда мы обсуждали арифметические возможности языка. Каждый такой предикат записывается как инфиксный оператор, имеющий два аргумента.

    X = Y

    Предикат проверки на равенство, описанный в разд. 6.8, считается согласованным и в случае, когда его аргументами являются равные целые числа.

    X \= Y

    Предикат проверки на несовпадение из разд. 6.8 также применим для целых чисел. Он выполняется, когда его аргументами являются различные числа.

    X ‹ Y

    Предикат меньше выполняется, если целое число, соответствующее левому аргументу, меньше, чем число, соответствующее правому аргументу. Оба аргумента должны быть конкретизированы.

    X › Y

    Предикат больше выполняется, когда целое число, соответствующее левому аргументу, больше, чем целое число, соответствующее правому аргументу. Оба аргумента должны быть конкретизированы, иначе возникает ошибка.

    X ›= Y

    Предикат больше или равно выполняется, когда целое число, соответствующее левому аргументу, больше или равно целому числу, соответствующему правому аргументу. Оба аргумента должны быть конкретизированы.

    X =‹ Y

    Предикат меньше или равно выполняется, когда левый аргумент меньше или равен правому аргументу. Оба аргумента должны быть конкретизированы. Заметим, что этот предикат записан как '=‹' а не '‹=' так что символ '‹=' является свободным и может быть использован в качестве оператора, который выглядит как стрелка.

    6.13. Наблюдение за выполнением программы на Прологе

    В этом разделе описаны встроенные предикаты, которые позволяют наблюдать за выполнением вашей программы. Здесь мы лишь опишем эти встроенные предикаты, а более подробное обсуждение отладки и трассировки программ содержится в гл. 8.

    trace

    Эффект выполнения предиката trace заключается в установлении режима полной трассировки. Это значит, что после выполнения trace вы получите возможность наблюдать за каждым из четырех основных типов событий[9], которые происходят с каждым порождаемым вашей программой целевым утверждением.

    notrace

    Эффект выполнения предиката notrace заключается в отмене режима полной трассировки. Однако сохраняется трассировка, вызываемая наличием контрольных точек (предикат spy).

    spy Р

    Предикат spy используется, когда необходимо обратить особое внимание на выполнение целевых утверждений, содержащих конкретные предикаты. Это можно сделать, установив на них контрольные точки. Предикат spy определен как префиксный оператор, и поэтому нет необходимости заключать в скобки его аргумент. Аргументом предиката может быть:

    • Атом. В этом случае контрольная точка устанавливается на все предикаты с именем, соответствующим атому, независимо от того, сколько аргументов они имеют. Так, если бы мы имели утверждения для сорт, имеющие как два, так и три аргумента, то целевое утверждение spy сорт вызвало бы установку контрольных точек на оба множества утверждений.

    • Структура вида Имя/Размерность, где Имя - это атом, а Размерность - целое число. Эта запись определяет предикат с функтором Имя, число аргументов которого равно Размерность. Так spy сорт/2 вызвало бы установку контрольных точек на целевые утверждения предиката сорт с двумя аргументами.

    • Список. В этом случае список должен заканчиваться пустым списком '[]', а каждый элемент списка сам должен быть допустимым аргументом для предиката spy. Пролог установит контрольные точки во всех местах, указанных в списке. Так spy[copт/2, присоединить/3] вызвал бы установку контрольных точек на предикат сорт с двумя аргументами и на предикат присоединить с тремя аргументами.

    debugging

    Встроенный предикат debugging позволяет увидеть, какие контрольные точки установлены на текущий момент. В качестве подобного эффекта выполнения целевого утверждения debugging печатается список всех контрольных точек.

    nodebug

    Целевое утверждение nodebug вызывает устранение всех контрольных точек, установленных на текущий момент.

    nospy

    Подобно spy, nospy является префиксным оператором. Предикат nospy является более селективным, чем nodebug, так как вы можете точно указать, какие контрольные точки должны быть удалены. Это достигается путем указания аргумента, задаваемого в точности в такой же форме, как и для предиката spy. Так, целевое утверждение nospy[обр/2, присоединить/3] приведет к тому, что будут удалены все контрольные точки с предиката обр с двумя аргументами и с присоединить с тремя аргументами.


    Примечания:



    9

    Модель, лежащая в основе трассировки, подробно описывается в гл. 8. - Прим. ред.




    https://www.houzz.com.au/hznb/projects


     

    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх