• I. НАВИГАЦИЯ
  • 1. Форма и размеры Земли. Основные точки и круги на земном шаре. Географические координаты
  • 2. Истинный горизонт и системы его деления
  • 3. Определение направлений в море. Перевод и исправление румбов
  • 4. Морские меры длины и скорости
  • 5. Видимый горизонт и дальность видимости предметов
  • 6. Прокладочный инструмент
  • 7. Морские карты и их масштаб
  • 8. Прокладка и определение места корабля по береговым предметам
  • II ТЕХНИЧЕСКИЕ СРЕДСТВА КОРАБЛЕВОЖДЕНИЯ
  • 1. Магнитные компасы
  • 2. Основные понятия о гироскопическом компасе
  • 3. Гирокомпас «Курс»
  • 4. Лаги
  • 5. Лоты и эхолоты
  • 6. Угломерные инструменты
  • 7. Радиотехнические средства кораблевождения
  • III ЛОЦИЯ
  • 1. О сведениях, содержащихся в лоции
  • 2. Навигационные опасности и плавучие предостерегательные знаки
  • IV ОБЩЕЕ МАНЕВРИРОВАНИЕ
  • Полезные советы штурману
  • Глава II

    О КОРАБЛЕВОЖДЕНИИ

    Кораблевождение — сложная и обширная наука. В нее входят следующие составляющие дисциплины: навигация, мореходная астрономия, лоция, технические средства кораблевождения (ТСК), общая теория маневрирования. Кораблевождение тесно связано с гидрометеорологией и океанографией, так как безаварийное плавание немыслимо без учета особенностей района и гидрометеорологической обстановки.

    I. НАВИГАЦИЯ

    1. Форма и размеры Земли. Основные точки и круги на земном шаре. Географические координаты

    Слово «навигация» латинское, оно означает — «искусство управления судами». Для успешного овладения искусством навигации необходимо знать основные сведения о Земле и уметь определять направления и расстояния на море.

    Земля представляет собой неправильной формы шар. Длина его экваториального радиуса равна 6 378 245 м, а полярного — 6 356863 м. Как видно, экваториальный диаметр Земли длиннее полярного примерно на 42,8 км. Если изобразить отклонение формы Земли от шара на глобусе с поперечником в 1 м по экватору, то его полярная ось будет короче экваториальной на 3,35 мм.

    Можно подумать, что горы, высочайшая из которых — Эверест — достигает почти 9 км, должны сильно искажать форму Земли. Но фактически эта гора в масштабе Земли на рельефном глобусе с диаметром 1 м изобразилась бы песчинкой в 3/4 мм. Поэтому, принимая bq. внимание все это, а также незначительность сжатия земного шара, в кораблевождении для большинства задач форму Земли принимают за правильный шар.

    Точки касания воображаемой оси, вокруг которой происходит, суточное вращение Земли, с земной поверхностью представляют собой географические полюсы: Северный ) и Южный 10) (рис. 18).

    Большой круг ECKHD, перпендикулярный оси вращения земного шара, называют плоскостью земного экватора, а геометрическое место точек касания этой плоскости к земной поверхности — экватором, Экватор делит Землю на два полушария — северное и южное. Он является начальной линией для отсчета широт в северном и южном направлениях.

    Окружность малого круга ВМА, параллельную экватору и проходящую через точку М, называют географической параллелью точки М (т. е. данной точки).

    Окружность большого круга, проходящую через географические полюсы, называют земным или географическим меридианом. Географический меридиан, который проходит через прежнее место расположения Гринвичской обсерватории (вблизи Лондона), является начальным и делит земной шар на два полушария — восточное и западное. От него ведется счет долгот в восточном и западном направлениях от 0 до 180°. Половину географического меридиана, проходящую от полюса Рс к полюсу Р через точку М, называют меридианом места или меридианом наблюдателя.

    Положение любой точки на земной поверхности определяется географическими координатами: широтой, которую в кораблевождении принято обозначать буквой греческого алфавита ср (фи) или русской буквой Ш, и долготой, которая обозначается греческой буквой Л(ламб-да) или русской буквой Д.

    Широтой места называется угол между плоскостью экватора и линией, соединяющей место наблюдателя на поверхности Земли с центром земного шара. В данном случае широта точки М выражается центральным углом МОК и измеряется дугой меридиана КМ. Широта имеет значение от 0 до 90° в сторону полюсов и называется норд (N) — северная, если определяемая точка находится в северном полушарии, или зюйд (S) — южная, если точка находится в южном полушарии.

    Рис. 18. Основные точки и круги на земной поверхности

    Долготой места называется угол, заключенный между плоскостью начального (нулевого, гринвичского) меридиана и плоскостью меридиана наблюдателя. Этот угол может иметь значение от 0 до 180°. Он измеряется меньшей дугой экватора, заключенной между указанными меридианами (в данном случае дугой СК), в восточном и западном направлениях. Долгота места может называться ост (Ost) — восточной, если меридиан места расположен в восточном полушарии, или вест (W) — западной, если меридиан места — в западном полушарии.

    Таким образом, параллель ВМА является геометрическим местом точек, имеющих одну и ту же широту, а меридиан РСМКРЮ — геометрическим местом точек с одинаковой долготой.

    Морские карты крупных масштабов, предназначенные для обеспечения плавания вблизи берегов, позволяют снимать с них координаты точки с точностью до десятых долей минуты дуги. Запись координат производится следующим порядком:

    2. Истинный горизонт и системы его деления

    Сила земного притяжения позволяет наблюдателю в любой точке на земной поверхности с помощью нитки с грузом получить направление отвесной линии (вертикаль). Она будет всегда направлена к центру Земли, Воображаемую горизонтальную плоскость, перпендикулярную отвесной линии и проходящую через глаз наблюдателя А (рис. 19), называют плоскостью истинного горизонта наблюдателя (плоскость 1). Вертикальную плоскость, проходящую через глаз наблюдателя и земные полюсы, называют плоскостью истинного меридиана наблюдателя (плоскость 2), а большой круг МР с КР образовавшийся от мысленного пересечения земного шара этой плоскостью, представляет собой меридиан места, или меридиан наблюдателя.

    Рис. 19. Истинный горизонт и его деление

    Плоскость истинного меридиана наблюдателя пересекается с плоскостью истинного горизонта по линии N — S, которая называется полуденной линией, так как в этой плоскости Солнце бывает точно в полдень.

    Рис. 20. Системы деления горизонта

    Вертикальную плоскость, проходящую через глаз наблюдателя перпендикулярно плоскости истинного меридиана наблюдателя, называют плоскостью первого вертикала (плоскость 5). Она пересекается с плоскостью истинного горизонта наблюдателя по линии Ost — W. Таким образом, пересечение взаимно перпендикулярных плоскостей истинного меридиана наблюдателя и первого вертикала дает четыре главные линии на плоскости истинного горизонта наблюдателя, которые указывают на главные точки горизонта: N, S, Ost и W. Если наблюдатель станет лицом к северу, то за спиной у него будет юг, справа — восток, слева — запад. Линии N — S, Ost — W в любой точке земной поверхности (кроме полюсов) занимают вполне определенное положение. Направления N, S, Ost и W называют главными направлениями, или главными румбами, которые делят истинный горизонт на четыре четверти: NOst — северо-восточную, SOst — юго-восточную, SW — юго-западную и NW — северозападную. Каждая четверть делится на 8 румбов, а весь горизонт — на 32 румба. Угол между соседними румбами составляет 11,25°. Такая система деления горизонта называется румбовой. Каждый румб имеет свое определенное направление и наименование (рис. 20). С ростом точности кораблевождения потребовалась более частая разбивка горизонта. Каждую четверть разбили на 90°. Главные румбы N и S отмечались О, a Ost и W — 90°, наименование четвертей осталось прежним. Такая система деления горизонта называется четвертной. Для указания направления по этой системе называется четверть и число градусов, например: NOst 47°, SOst 34°, SW 82°, NW 15° и т. д.

    В настоящее время применяется система круговой разбивки горизонта на 360° без различия четвертей. В этой системе главные румбы обозначаются так: N — 0°(360°), Ost — 90°, S — 180°, W — 270°. Круговая система счета направлений проще и нагляднее других, но судоводитель должен уметь переводить направления, данные по одной системе, в направления по другой системе, так как при решении многих навигационных и астрономических задач получаются результаты с указанием наименования четверти.

    3. Определение направлений в море. Перевод и исправление румбов

    Зная положение истинного меридиана наблюдателя, т. е. направления на географические (истинные) полюса Земли (Nи и Sи), мы можем определить направление на любой предмет, расположенный на земной поверхности. Для этого надо лишь измерить угол, заключенный между нордовой частью линии истинного меридиана и линией на предмет.

    Узнать величину этого угла можно с помощью компаса и пеленгатора. Но беда в том, что стрелка магнитного компаса под действием сил земного магнетизма располагается не в плоскости истинного меридиана, а в плоскости магнитного меридиана и указывает направления на магнитные полюса Земли (NM i SM). Угол, заключенный менаду направлениями на норд истинный и норд магнитный, называется магнитным склонением и обозначается буквой d. Склонение может быть остовым и иметь знак плюс, если магнитный меридиан отклонился от истинного к востоку, и вестовым (знак минус), если отклонение к западу. Магнитное склонение — важный элемент в кораблевождении, поэтому оно указывается на морских навигационных картах.

    С течением времени магнитные полюса меняют свое положение. Величина годового изменения склонения в различных точках земной поверхности колеблется от 0 до 0,3°. Это явление делает необходимым при расчете истинных направлений вводить поправки на указанное на карте склонение, т. е. приводить его к году плавания в данном районе моря.

    Кроме действия сил земного магнетизма, на стрелку магнитного компаса влияют силы магнитного поля самого корабля, в результате чего она отклоняется от плоскости магнитного меридиана и располагается в плоскости своего компасного меридиана. Угол, заключенный между плоскостью магнитного меридиана и плоскостью компасного меридиана, называется девиацией. Она обозначается буквой греческого алфавита б (дельта). Если стрелка магнитного компаса отклонится к востоку от магнитного меридиана — девиация называется остовой и имеет знак плюс, если отклонится к западу — называется вестовой и имеет знак минус. Девиация магнитного компаса зависит от курса корабля.

    Для того чтобы компас стал надежным указателем направлений в море, производят компенсацию девиации, после чего определяют ее остаточное значение на восьми курсах (N, NOst, Ost, SOst, S, SW, W и NW) и рассчитывают таблицу девиации.

    Алгебраическая сумма значений склонения и девиации составляет общую поправку компаса, которая обозначается символом Дк. Общая поправка также может быть остовой и иметь знак плюс или вестовой и иметь знак минус. Общую поправку компаса, склонение и девиацию связывают следующие выражения:

    Дк=d + б; d=Дк-б; б=ДK-d.

    При расчете общей поправки компаса склонение снимают с карты и приводят к году плавания, а девиацию выбирают из таблицы девиации на компасный курс.

    В практике кораблевождения приходится иметь дело с курсом корабля и пеленгом (рис. 21).

    Курсом корабля называется угол на плоскости горизонта между нордовой частью меридиана и диаметральной плоскостью корабля. Пеленгом называется угол на плоскости горизонта между нордовой частью меридиана и линией, указывающей на предмет. Курсы и пеленги отсчитываются от нордовой части меридиана по часовой стрелке от 0 до 360° и могут иметь наименование истинных (ИК, ИП), магнитных (МК. МП) и компасных (КК, КП).

    Направление, отличающееся от истинного (магнитного, компасного) пеленга на 180°, называется обратным истинным (магнитным, компасным) пеленгом и обозначается соответственно ОИП, ОМП, ОКП.

    Рис. 21. Истинные, магнитные и компасные курсы и пеленги, курсовой угол: NH — SИ — меридиан истинный; Nм — Sм — меридиан магнитный; NR — SK — меридиан компасный; ИК — истинный курс; КК — компасный курс; МК — магнитный курс; ИП — истинный пеленг; МП — магнитный пеленг; КП — компасный пеленг; КУ — курсовой угол; а — магнитное склонение-, б — девиация; Дк — общая поправка компаса

    На морской карте всегда прокладываются истинные направления, а рулевому для удержания корабля на истинном курсе рассчитывается и задается компасный курс. Поэтому очень важно знать величины и знаки склонения и девиации, уметь правильно переходить от компасных направлений к истинным и обратно. Переход от компасных направлений к истинным называется исправлением румбов, а переход от истинных направлений к компасным — переводом румбов. Для перевода и исправления румбов существуют следующие формулы:

    ИК = КК+Дк и КК=ИК-Дк.

    Чтобы проложить на карте пеленги, снятые по компасу, их надо исправить общей поправкой компаса, действующей на курсе, которым шел корабль в момент взятия пеленгов:

    ИП=КП+ДК; КП=ИП — Дк.

    Перевод и исправление румбов считается очень ответственной работой судоводителя, поэтому ее следует выполнять со всей тщательностью, небрежность и ошибка в расчете могут привести к навигационной аварии. Чтобы избежать возможных ошибок в знаках d и б при расчете по приведенным формулам, судоводителю для наглядности рекомендуется производить графическое построение.

    Существует и другой способ указания направления — от линии курса корабля. Угол между диаметральной плоскостью корабля и линией, направленной на предмет, называется курсовым углом (УК). Он считается до 180° вправо и влево от носа корабля, который в этом случае принимается за 0°. Указывая направление на какой-либо предмет, называют борт и число градусов, например: «Справа 30 — белая пирамида» или «Слева 25 — плавающий предмет» и т. п.

    ИП = ИК+КУ п. б. (правого борта); ИП=ИК — КУ л. б. (левого борта).

    4. Морские меры длины и скорости

    Единицей измерения расстояния на море является морская миля, равная линейной длине одной минуты меридиана, т. е. одной минуте широты. В СССР и ряде других стран принята миля, равная 1852,3 м(6080 футов). 1/10 часть мили называется кабельтов, он равняется 185,2 м. При решении практических задач кораблевождения принимают стандартную международную милю, длина которой принята равной 1852 м, что соответствует длине дуги одной минуты меридиана в средних широтах полушария. Для измерения расстояний на море могут также применяться следующие единицы:

    Наименование Длина, м Длина, футы
    Морская сажень 1-1,83 6
    Ярд 0,914 3
    Фут 0,3048 1

    Скорость корабля измеряется числом миль, пройденных им за 1 ч. Единицу скорости «миля в час» называют узлом. Нельзя говорить: «Скорость корабля 15 узлов в час». Следует сказать: «Скорость 15 узлов».

    В настоящее время проходит реформа по замене миль и узлов на километры и километры в час соответственно.

    5. Видимый горизонт и дальность видимости предметов

    Глаз наблюдателя находится на некоторой высоте е над поверхностью Земли (рис. 22). Предположим, что глаз наблюдателя расположен в точке Л, тогда расстояние МА — е. Лучи зрения из точки А расходятся по направлениям: ACU AC2, ACZ, АСА и т. д., касательным к поверхности земного шара. Геометрическое место точек касания луча зрения с земной поверхностью образует малый круг d, С2, С3, С4, который называется видимым горизонтом наблюдателя.

    Рис. 22. Дальность видимого горизонта 

    С увеличением высоты наблюдателя плотность земной атмосферы понижается, и луч, преломляясь в ее различных по плотности слоях, распространяется не прямолинейно, а по некоторой кривой, в связи с чем наблюдатель видит горизонт не по направлению ACIV, а по направлению АК, которое является касательной к криволинейному лучу ЛВ4 в точке наблюдателя. Следовательно, видимый горизонт будет представлен уже другой окружностью: Ви В2, Въ, В4. Дальность видимого горизонта Д (в милях), равная дуге АВ4, определяется по формуле Д=2,08 |/е, где е — высота глаза наблюдателя в метрах.

    Предмет, который видит наблюдатель, также имеет определенную высоту Н (рис. 23). Поэтому дальность видимости предмета Дп будет равна расстоянию ЛМ, которое слагается из дальности видимого горизонта наблюдателя Дг и дальности видимого горизонта предмета Ди. Тогда Дпе+Дн=2,08(|/е+|/H).

    Рис. 23. Дальность видимости предмета

    В навигационных пособиях и на морских картах дальность видимости маячных огней Дк рассчитана для высоты наблюдения 5 м и равна расстоянию МК. Дальность видимого горизонта с высоты глаза наблюдателя 5 м равна 4,7 мили. Если высота глаза наблюдателя больше или меньше 5 м, то к дальности видимости предмета Дк, указанной в пособиях, следует прибавить поправку А на действительную высоту глаза наблюдателя, которая представляет собой разность расстояния между дальностью видимого горизонта с высоты ей 5 м, Тогда Л — 2,08 |/е — 2,08 |/5. Эта поправка будет иметь знак плюс, когда е > 5 м, и знак минус, когда e < 5 м.

    Дальность видимости маячного огня будет выражаться формулой:

    где Дк — дальность видимого горизонта предмета (с карты);

    А — поправка расстояния на высоту глаза наблюдателя.

    Чтобы каждый раз не производить математических расчетов, в мореходных таблицах (один из видов навигационных пособий) даются дальности видимого горизонта для различной высоты глаза.

    6. Прокладочный инструмент

    Основной работой судоводителя на морской навигационной карте является прокладка, которая включает графические работы, связанные с учетом движения корабля. Прокладка ведется простым карандашом с помощью прокладочного инструмента: навигационного транспортира, циркуля-измерителя и параллельной линейки.

    Навигационный транспортир служит для построения и измерения углов (курсов, пеленгов) на морской навигационной карте и представляет собой градуированный через Г полукруг с линейкой. Центр этого полукруга находится в центре линейки и обозначается риской. У исправного транспортира на дуге полукруга не должно быть зазубрин, деления должны быть одинаковой величины, срезы линейки — параллельны друг другу. Градуированная дуга должна быть дугой круга, а риска на линейке — совпадать с центром этого круга.

    Циркуль-измеритель предназначен для измерения и откладывания на морской карте расстояний. Он имеет две раздвижные ножки с острыми иглами на концах. Сдвинутые вместе ножки исправного циркуля-измерителя должны делать на карте укол размером не более 0,2 мм.

    Параллельная линейка служит для проведения на карте прямых линий, параллельных заданному направлению. Она состоит из двух линеек, соединенных между собой двумя планками с помощью шарниров так, чтобы линейки свободно раздвигались и сближались вплотную, оставаясь строго параллельными друг к другу. Параллельные линейки изготовляются трех размеров: 300, 450 и 600 мм.

    Для ведения прокладки необходимо в совершенстве уметь пользоваться прокладочным инструментом и четко выполнять следующие основные действия: снимать с карты координаты и по заданным широте и долготе наносить точку на карту; прокладывать на карте и снимать с нее направление (курс, пеленг); измерять на карте расстояние между двумя точками и откладывать расстояние на прямой.

    7. Морские карты и их масштаб

    Современная картография как наука также подразделяется на ряд дисциплин: картоведение; математическая картография; составление и редактирование карт; оформление карт и издание карт.

    Существует целый ряд способов, дающих возможность изображать земную поверхность на карте. Способ изображения земной поверхности на плоскости называется картографической проекцией, выбор которой определяется целью издания.

    К морской карте предъявляются следующие требования:

    линия пути корабля, следующего одним и тем же курсом (локсодромия), должна изображаться на карте прямой;

    картографическая проекция должна быть равноугольной, т. е. углы между предметами на местности должны соответствовать углам между этими предметами на карте.

    Этим условиям удовлетворяет равноугольная нормальная цилиндрическая (меркаторская) проекция, в которой параллели и меридианы изображены прямыми линиями, пересекающимися под прямым углом. Для сохранения достоверного изображения на карте контура местности, меридианы к полюсам Земли растягиваются на такую же величину, на какую в этой широте растянута параллель.

    При составлении карты, вне зависимости от характера картографической проекции, всегда уменьшают действительные размеры участков земной поверхности. Отношение длины какой-нибудь линии на карте к длине той же линии на местности называется масштабом. Масштабы бывают числовые и линейные. Числовой масштаб выражается в виде дроби, в числителе которой стоит единица, а в знаменателе — число, показывающее, во сколько раз единица длины на местности уменьшена на карте. Например, числовой масштаб 1: 25 000 показывает, что каждая миля на местности изображена на карте отрезками в 25 000 раз меньше.

    Линейный масштаб изображается в виде прямой, разделенной на сантиметры или другие единицы длины, которые соответствуют милям или другим единицам длины на местности. Выбор масштаба карты обусловливается тем, насколько подробной должна быть карта или размер района, изображенного на ней.

    Морские карты подразделяются на навигационные, вспомогательные и справочные. Навигационные карты предназначаются для счисления пути и определения места корабля в море, ориентировки в обстановке и графического решения задач по кораблевождению. В зависимости от масштаба они делятся на генеральные, путевые, частные и планы.

    Генеральные (общие) карты изображают целые океаны, моря или их части. Они служат для общего изучения маршрута перехода, предварительной прокладки и счисления в открытом море.

    Путевые карты изображают небольшие части земной поверхности с подробным нанесением навигационных опасностей. Они служат для ведения прокладки и определения места корабля при плавании вдоль побережья, а также вне видимости берегов.

    Частные карты изображают отдельные, особо трудные в навигационном отношении районы: заливы, проливы, подходы к портам и т. п. На них подробно наносятся средства навигационного оборудования: створы, секторы маячных огней, ограждение опасностей и др. Этими картами пользуются при прохождении узкостей, при подходах к берегу и т. п.

    Планы со всеми подробностями изображают бухты, рейды, гавани и якорные места. Они служат для руководства при входе в бухту, устье реки, для выбора места постановки на якорь и других подобных нужд.

    8. Прокладка и определение места корабля по береговым предметам

    Существует два вида прокладки: предварительная и исполнительная (рис. 24).

    Предварительная прокладка выполняется до выхода корабля в море. Она заключается в подробном изучении района предстоящего плавания по лоциям и морским навигационным картам, в подборе пособий и нанесении на подобранные и откорректированные карты наивыгоднейшего пути следования. При выборе пути принимают во внимание не только протяженность маршрута, но и условия плавания: ветры, течения, возможную ледовую обстановку, приливоотливные явления, средства навигационного оборудования, навигационные опасности и время их прохода, время прибытия в пункт назначения и т. п.

    Рис. 24. Предварительная и исполнительная прокладка пути корабля

    На каждом курсе предварительной прокладки наносится число градусов и протяженность курса (ИК и 5), рассчитываются компасные курсы и общие поправки компаса. Все эти данные сводятся в специальную таблицу курсов.

    Исполнительная прокладка ведется непрерывно с момента выхода корабля из базы или съемки его с якоря. Курсы прокладывают с учетом конкретной обстановки на переходе, стремясь возможно ближе придерживаться курсов предварительной прокладки.

    Сразу же по выходе из базы определяют место корабля, наносят его на карту и прокладывают от него нужный истинный курс. На линии истинного курса записывают компасный курс и общую поправку компаса.

    Точка, полученная в результате определения места по пеленгам на береговые предметы, расстояниям до определенных объектов или по пеленгу и расстоянию, называется обсервованным местом корабля. Она обводится кружочком, над которым в виде дроби записывается время определения и отсчет лага. Данные прокладки записываются в навигационный журнал. Контрольные определения места производятся не реже чем через 1 ч и в зависимости от обстановки в районе плавания: ветра, течения, видимости, наличия навигационных опасностей и др.

    Простейшим способом определения места корабля является способ по двум пеленгам. Наиболее точным и распространенным считается способ определения по трем пеленгам, когда при помощи пеленгатора, установленного на магнитном компасе или репитере гирокомпаса, одновременно берут отсчеты направлений на три береговых объекта, замечают время с точностью до 1 мин и записывают отсчет лага до 0,1 мили. Пеленги, взятые по магнитному компасу, исправляют общей поправкой компаса и прокладывают их на навигационной карте от соответствующих объектов. Место корабля будет в точке пересечения этих пеленгов. На точность определения влияет много факторов, одним из которых является очередность взятия пеленгов. Отсчет направления на ориентир, находящийся в траверзных курсовых углах (близким к 90°), изменяется гораздо быстрее, чем отсчеты на ориентиры носовых и кормовых курсовых углов. Следовательно, первыми берутся пеленги на ориентиры носовых и кормовых курсовых углов, последними — на ориентиры траверзных курсовых углов.

    Наибольшую сложность представляет плавание при наличии дрейфа корабля от ветра или сноса его течением. При этом прокладка ведется не по курсу, а по пути корабля, определяемому углом сноса от истинного курса.

    Прокладка, выполняемая без контрольных определений места корабля, называется счислением. Счисление ведется от последней обсервации и заключается в следующем: в определенный момент по судовым часам замечают отсчет лага и, рассчитав пройденное кораблем расстояние от момента последнего определения, откладывают его по линии истинного курса. Полученную счислимую точку отмечают на линии курса черточкой и в виде дроби записывают время и отсчет лага.

    Существуют и другие способы определения места корабля. В частности, ими занимается мореходная астрономия, которая по наблюдениям за небесными светилами позволяет находить широту и долготу корабля в море, определять поправки компаса с целью систематического контроля за правильностью его показаний, а также решать ряд вспомогательных задач.

    II

    ТЕХНИЧЕСКИЕ СРЕДСТВА КОРАБЛЕВОЖДЕНИЯ

    Все системы и приборы, предназначенные для решения различных задач кораблевождения, относятся к техническим средствам кораблевождения (ТСК) и изучаются соответствующей научной дисциплиной.

    Каждый прибор и система имеют свое основное назначение. Так, для определения направлений (курсов, пеленгов) служат магнитные и гироскопические компасы — курсоуказатели; для определения пройденного расстояния и скорости хода — лаги; для определения глубины — лоты и эхолоты; для определения расстояний — дальномеры и радиолокационные станции; для измерения горизонтальных и вертикальных углов — секстаны, наклономеры, различные призмы; для измерения времени — хронометры, палубные часы и секундомеры; для определения и измерения гидрометеорологических факторов — барометры, барографы, термометры, термографы, психрометры, анемометры и др.; для определения места корабля в просторах Мирового океана — радионавигационные и навигационные системы, радиопеленгаторы и др.

    1. Магнитные компасы

    По назначению компасы подразделяются на главные, путевые и шлюпочные. По главному компасу назначается курс корабля, а также берутся отсчеты пеленгов на предметы для решения задач по безопасности кораблевождения. Путевым является тот компас, по которому рулевой удерживает корабль на заданном курсе. Шлюпочные компасы имеют меньшие размеры и используются на катерах и шлюпках при сообщении корабля, стоящего на рейде, с берегом, при проведении различных гидрографических работ с катеров и шлюпок и т. п.

    На кораблях Военно-Морского Флота применяется морской магнитный 127-мм (5-дюймовый) компас. Его основными частями являются: котелок с картушкой и пеленгатором, нактоуз с амортизирующим подвесом для установки котелка и устройством для уничтожения девиации.

    Котелок компаса (рис. 25) представляет собой латунный цилиндрический резервуар, разделенный перегородкой на две камеры. Обе камеры сообщаются между собой с помощью четырех отверстий, прикрытых снизу воронкой. Верхняя — основная камера — окрашивается в белый цвет и служит для размещения в ней главной части компаса — картушки. Сверху камера герметически закрывается стеклом на резиновой прокладке. Стекло с помощью шурупов прижимается к верхнему срезу котелка кольцом, имеющим деления от 0 до 360° через 1° (азимутальный круг). С двух противоположных сторон камеры вертикально внутри укреплены проволоч-,ки, называемые курсовыми чертами. Компас устанавливается так, чтобы его курсовые черты совпадали с диаметральной плоскостью корабля или были строго параллельны ей.

    Камера котелка 127-мм компаса заполняется жидкостью — смесью этилового спирта (43 % по объему) с дистиллированной водой. Температура замерзания такой смеси -26 °C.

    Рис. 25. Устройство котелка 127-мм магнитного компаса: 1 — перегородка, 2 — верхняя камера; 3 — нижняя камера; 4 — отверстие; 5 — воронка, 6 — картушка; 7 — стекло; 8 — азимутальное кольцо; 9 — курсовые черты; 10 — втулка; 11 — колонка; 12 — шпилька; 13 — топка картушки; 14 — диафрагма; 15 — конический стакан; 16 — пробка; 17 — чашка; 18 — цапфы; 19 — поплавок; SO — магнитные стрелки; 21, 23 — кронштейны; 22 — конус топки

    Перегородка в центральной части имеет втулку. Во втулку ввинчивается латунная шпилька с иридиевым или стальным острием, на которое накладывается своей топкой картушка.

    Нижняя — дополнительная камера — с помощью кольца на резиновой прокладке закрывается снизу диафрагмой, имеющей в центре конический стакан с ввинченной в него пробкой, через которую можно заменить шпильку и долить компасную жидкость. Нижняя камера заливается жидкостью до уровня нижнего выходного отверстия воронки. Она служит для компенсации изменения объема жидкости при колебаниях температуры окружающего воздуха.

    Для увеличения устойчивости котелка вовремя качки к нижней части его корпуса шурупами прикреплена залитая свинцом латунная чашка, в центре которой имеется отверстие для доступа к пробке.

    С внешней стороны, в верхней части котелка, прямофы, которыми котелок кладется в специальные гнезда кольца карданового подвеса, а кольцо своими цапфами, ось которых перпендикулярна оси цапф котелка, кладется в гнезда пружинного подвеса, укрепленного в верхней части нактоуза. Такое устройство смягчает динамические воздействия на компас и при качке позволяет котелку сохранять горизонтальное положение.

    Картушка состоит из пустотелого поплавка и шести симметрично припаянных к нему магнитных стрелок, заключенных в латунные пенальчики. К поплавку на шести кронштейнах прикреплен ободок и слюдяной диск, на который наклеивается бумажный диск картушки, разделенный по круговой системе на 360° со счетом по часовой стрелке. Диск имеет также деление на главные и четвертные румбы с буквенным их обозначением. Нуль разбивки картушки N находится против северного конца магнитных стрелок. В центре поплавка впаян конус топки.

    Топка представляет собой сапфировую или агатовую чашечку, которой картушка накладывается на острие шпильки.

    Компасная жидкость обеспечивает картушке легкость и плавность вращения на шпильке, уменьшает трение при вращении, увеличивает устойчивость ее в меридиане во время качки.

    Для определения направлений на объекты применяется специальное приспособление — пеленгатор, который устанавливается сверху на котелок компаса. Обыкновенный пеленгатор состоит из основания (латунного кольца с крестовиной) и смонтированных на нем предметной мишени, глазной мишени и чашки для установки дефлектора.

    Глазная мишень снабжена зеркальной призмой, служащей для того, чтобы наблюдатель мог одновременно видеть пеленгуемый предмет и отсчет направления по картушке. На специальной колонке глазной мишени укреплены два откидных светофильтра.

    Для определения направлений на небесные светила предметная мишень снабжена откидным черным зеркалом, укрепленным у ее основания впереди.

    Нактоуз 127-мм компаса представляет собой шкапик из дереза или фигурную отливку из силумина. И в том и в другом случае нактоуз имеет дверцы для доступа к девиационному прибору. Нактоуз имеет пружинный подвес для амортизации котелка, девиационный прибор, а также защитный колпак или шаровой осветительный прибор (ШОП). В верхнем основании нактоуза или на специальных кронштейнах прикрепляется мягкий (в магнитном отношении) металл, предназначенный для уничтожения влияния вредных магнитных сил корабельного металла на стрелку компаса.

    Шаровой осветительный прибор служит для освещения картушки при работе в ночное время и предохранения компаса от ударов и загрязнения. Он представляет собой латунный сферический колпак с тремя специальными окнами. По бокам в колпак вмонтированы гнезда для установки масляных фонарей. В верхней части внутри колпака вмонтирована электрическая пальцеобразная лампочка.

    В настоящее время выпускаются компасы с донным освещением, в которых подсветка картушки производится снизу специальной электрической лампочкой, вмонтированной в гнездо латунной чашки, закрывающей нижнюю часть котелка.

    Повседневный уход за магнитными компасами поручается определенному лицу из числа рулевых. Необходимо помнить, что от точности показаний главного и путевого магнитных компасов зависит безопасность плавания. Особенно осторожно следует обращаться с котелком и пеленгатором — оберегать их от ударов, резких толчков и от воздействия непогоды. Удаление с компаса капель морской воды, налета пыли производят чистой мягкой ветошью, а призмы, светофильтры и зеркало пеленгатора протирают мягкой фланелевой тряпочкой или замшей.

    Чистить азимутальное кольцо порошком, пастой или мазью запрещается. Азимутальное кольцо, пеленгатор и острия цапф должны быть смазаны тонким слоем технического вазелина.

    При стоянке корабля у причала магнитный компас должен быть закрыт защитным колпаком и накрыт парусиновым чехлом. Пеленгатор снимается с компаса и хранится в специальном футляре или ящике.

    Дверца нактоуза для доступа к девиационному прибору должна быть всегда закрыта на замок, ключ от которого хранится у заведующего. Силуминовые нактоузы — вместо дверцы имеют люки, закрывающиеся крышками на специальных болтах.

    2. Основные понятия о гироскопическом компасе

    В детстве всем приходилось играть с удивительной по своим свойствам игрушкой — волчком. Пока волчок не раскрутишь, его нельзя заставить стоять, но стоит придать ему вращательное движение, и ось его принимает вертикальное положение. Чем больше скорость вращения, тем устойчивее волчок. Хорошо раскрученный волчок всегда стремится занять устойчивое вертикальное положение, даже если его ось первоначально была наклонена. Если быстро вращающийся волчок легонько толкнуть, он, качнувшись в стороны, опять примет вертикальное положение. На этом принципе и создан гироскоп.

    Симметричный металлический диск с обмоткой (ротор) поместили на оси в кардановый подвес (рис. 26) и с помощью электромагнитного воздействия заставили его быстро вращаться. Ось вращения ротора называют осью гироскопа, или осью X, ось вращения внутреннего кольца — осью Y, а наружного полукольца — осью Z. Ротор гироскопа имеет возможность вращаться относительно всех трех осей. Центр массы всей системы находится в точке пересечения осей и называется центром гироскопа.

    Такую систему называют гироскопом с тремя степенями свободы, или свободным гироскопом. Свободный гироскоп обладает несколькими свойствами, и первое из них заключается в том, что ось быстро вращающегося ротора стремится сохранить полученное направление, даже если наклонять или вращать подставку, на которой размещен гироскоп. Вторым его важным свойством является способность оси ротора под действием приложенной к ней силы поворачиваться в плоскости, перпендикулярной направлению действия силы. Представим, что мы нажали сверху на горизонтальное кольцо карданового подвеса в точке А. Вместо того чтобы повернуться вокруг оси У, ось ротора повернется вокруг отвесной оси Z. Это свойство называется прецессионным движением, или прецессией.

    Рис. 26. Гироскоп

    Предположим, что нам удалось установить ось свободного гироскопа в плоскости истинного меридиана. Но ведь Земля имеет суточное вращение вокруг своей оси, вследствие чего ее восточная часть все время опускается в пространстве, а западная поднимается. Представив вращение Земли и зная свойство оси гироскопа сохранять свое положение в пространстве, нетрудно вообразить, что ось установленного в какой-то точке Земли гироскопа через некоторое время, на наш взгляд, отклонится от плоскости истинного меридиана и от плоскости истинного горизонта.

    Для превращения свободного гироскопа в прибор, способный показывать истинные направления, к нижней части его камеры по оси Z подвешивается груз (маятник), который ограничивает степень свободы относительно горизонтальной оси У. Маятник, стремясь располагаться по отвесной линии, все время будет вызывать прецессию оси ротора, пока она не совместится с плоскостью истинного меридиана, т. е. пока маятник не займет положение строго по оси Z гироскопа.

    Так был изобретен гирокомпас — прибор, не зависящий от магнитных и электромагнитных полей, прибор, способный давать истинные направления. Но следует помнить, что каждый гирокомпас имеет свою постоянную инструментальную поправку (Дгк). Эта поправка не зависит от курса корабля, она определяется при заводских испытаниях прибора и записывается в его паспорт. Следовательно, для получения истинного направления к снятому с гирокомпаса показанию курса или пеленга необходимо прибавить поправку с ее знаком:

    ИКГК=ККГК+(±ДГК). Рис. 27. Схема расположения основных частей гирокомпаса: 1 — резервуар; 2 — груз; 3 — пространство между следящей сферой и гиросфе-рой; 4 — следящая сфера; 5 — гиросфера; 6 — стол; 7 — нактоуз; 8 — гироскоп

    3. Гирокомпас «Курс»

    Гирокомпас монтируется в неподвижном относительно корабля нактоузе, устанавливаемом в надежно защищенном месте. Основными его частями являются чувствительный элемент (гиросфера) и следящая сфера (рис. 27). В средней части нактоуза на кардановом подвесе помещен латунный бак (резервуар) с грузом внизу. В резервуар заливается поддерживающая жидкость-, состоящая из 13 л дистиллированной воды и 2,45 л глицерина. Для лучшей токопроводимости в жидкость добавляют 11 г салициловой кислоты. В резервуар с жидкостью помещается следящая сфера, представляющая собой алюминиевый, покрытый изнутри эбонитовой массой шар. Внутри следящей сферы находится гиросфера. Пространство между внутренней стенкой следящей сферы и гиросферой через отверстия в следящей сфере заполнено той же поддерживающей жидкостью. Верхняя часть резервуара закрыта столом, представляющим собой панель, на которой смонтирован ряд приборов и устройств, необходимых для работы гирокомпаса и контроля за ним. С помощью пружинного подвеса и шариковых подшипников следящая сфера подвешивается к столу и может свободно вращаться вокруг вертикальной оси.

    Чувствительный элемент (гиросфера) является главной частью гирокомпаса. Это латунная сфера, образованная из двух полушарий. Внутри гиросферы имеется рама, в которой на подшипниках укреплены вертикальные оси камер двух гироскопов. Снаружи гиросфера покрыта тонким слоем эбонита, а в экваториальной части имеет пять токопроводящих полос. У концов широкого экваториального пояса вмонтированы два угольных электрода, обеспечивающие действие следящей системы. Их называют следящими электродами гиросферы. На экваториальной полосе имеется градусная разбивка, нуль которой обращен к югу гиросферы. После запуска гирокомпаса, когда гиросфера «войдет в меридиан», т. е. установится своей диаметральной линией в плоскости истинного меридиана (0 — 180°), отсчет курса корабля может быть снят по этим делениям. На полюсах гиросферы вмонтированы полярные электроды, через которые подается электроэнергия к токоприемникам, расположенным внутри гиросферы. Токи для питания гиромоторов передаются через поддерживающую жидкость, что обеспечивает чувствительному элементу полную свободу.

    Центр массы собранной гиросферы на 7–8 мм ниже ее геометрического центра. При наклонах плоскости экватора гиросферы это создает момент силы тяжести, вызывающий прецессионное движение гиросферы в меридиан.

    Диаметр гиросферы — 252 мм, масса — 8750 г, масса каждого ротора — 2325 г, диаметр ротора — 127 мм, скорость их вращения — около 20 000 об/мин.

    С помощью следящей системы данные курса от гиросферы могут передаваться на картушки основного прибора, расположенные на столе, а также в различные точки корабля на репитеры и другие приборы, работающие от гирокомпаса (курсограф, авторулевой, автопрокладчик).

    Рис. 28. Репитер гирокомпаса

    Действие следящей системы заключается в стремлении следящей сферы сохранить свое положение относительно гиросферы. При повороте корабля следящая сфера будет отклоняться от положения чувствительного элемента, возникнет разность потенциалов электродвижущей силы на специальном устройстве, а это заставит заработать азимутальный мотор, который начнет поворачивать следящую сферу вслед за чувствительным элементом.

    Гирокомпас имеет ряд преимуществ перед магнитным компасом:

    он не подвержен воздействию магнитных и электромагнитных полей;

    устойчивее в работе, что повышает точность его показаний при качке, толчках и т. п.;

    поправка остается постоянной при изменении курса корабля и может быть выведена до нуля из показаний репитеров;

    позволяет связывать с ним целый ряд штурманских, артиллерийских и других приборов.

    К недостаткам гирокомпаса относятся:

    потребность в непрерывном электропитании;

    длительность подготовки к походу (4–6 ч);

    сложность устройства, что требует более длительной спецподготовки обслуживающего персонала.

    Репитер гирокомпаса (рис. 28) повторяет показания основного компаса (матки). Репитеры устанавливаются в различных местах, где необходимо следить за курсом корабля: в рулевой и штурманской рубках, на мостике, в каюте командира, в запасном посту управления.

    Репитер представляет собой котелок, сверху герметично закрытый стеклом для наблюдения за положением картушки. Внутри котелка имеется моторчик, постоянно принимающий изменение курса корабля от основного компаса. Через систему зубчатых передач эти изменения передаются на картушку.

    Рис. 29. Оптический пеленгатор

    Репитер имеет картушку грубого отсчета и картушку точного отсчета. Первая разбита на 360° и оцифрована через 10 делений по круговому счету. Внутри картушки грубого отсчета в одной с ней плоскости вмонтирована картушка точного отсчета. Она разбита на 100 делений через 0,1°. Снимая отсчет курса или пеленга по репитеру, целые десятки градусов берут с картушки грубого отсчета, а единицы и десятые доли градуса — с картушки точного отсчета. Сбоку на корпусе котелка репитера имеется закрывающееся отверстие, через которое специальным ключом производится согласование репитера с показанием основного компаса.

    Для рулевого и в других постах, где необходимо наблюдать за курсом корабля, репитеры располагаются на кронштейнах. Репитеры, предназначенные для взятия пеленгов и определения курсовых углов, устанавливаются на пелорусах, прикрепленных к палубе крыльев ходового мостика.

    Для взятия пеленгов на отдаленные видимые предметы и определения курсовых углов на них служит оптический пеленгатор (рис. 29), устанавливаемый на азимутальный круг репитера, размещенного на пелорусе.

    Курсограф — прибор, автоматически записывающий на специальной бумажной ленте курсы корабля. Он представляет собой коробку, в которой размещается лентопротяжный механизм и механизм, связанный с основным гирокомпасом и управляющий движением двух перьев, непрерывно вычерчивающих линии. Чтобы прочесть курс на ленте, надо сначала по записи одного из перьев определить четверть компаса, в которой располагается курс, и только после этого по шкале соответствующей четверти прочесть на ленте курс корабля.

    Авторулевой — прибор для автоматического удержания корабля на заданном курсе.

    Автопрокладчик — прибор, автоматически вычерчивающий курс корабля на навигационной карте. Автопрокладчик работает от гирокомпаса и лага.

    4. Лаги

    Лагом называют прибор, служащий для определения скорости корабля (в узлах) и пройденного им расстояния (в милях). По принципу работы лаги подразделяются на вертушечные, гидродинамические (гидравлические) и индукционные, измеряющие скорость корабля относительно воды, гидроакустические и геомагнитные, дающие скорость плавающего сооружения относительно Земли.

    Рис. 30. Схема действия гидравлического лага: 1 — трубка полного давления; 2 — мембранный аппарат; 3 — трубка статического давления; 4 — мембрана; 5 — полость полного давления; 6 — полость статического давления; 7 — шток

    До конца XIX века на всех кораблях применялся ручной лаг, от которого до сих пор сохраняется термин морской единицы скорости — «узел». Ручной лаг представлял собой деревянный сектор со свинцовой обивкой в нижней части для устойчивости на воде. К сектору крепился лаглинь — пеньковый тросик, разделенный узлами через 1/120 часть мили. Для определения скорости сектор выбрасывался с кормы за борт. Погрузившись в воду на 2/3 своей высоты, сектор становился неподвижным и начинал вытягивать с вьюшки, установленной на корме, лаглинь. Матрос отсчитывал, сколько узлов стравливалось с вьюшки за полминуты. Число миль в час соответствовало числу узлов, стравленных за это время. Так «узел» стал морской единицей скорости.

    В конце XIX века появились вертушечные лаги. Само название говорит о том, что в устройстве подобных лагов главную роль играет вертушка. При известном шаге лопасти буксируемой вертушки можно установить, сколько она сделает оборотов на одну милю пройденного кораблем расстояния. Число оборотов фиксируется механическим или электромеханическим счетчиком. Поэтому вертушечные лаги подразделяются на механические и электромеханические. Последние могут по проводам передавать показания лага на указатель скорости, счетчик пройденного расстояния и автопрокладчик.

    В настоящее время на кораблях широко применяется гидродинамический, или гидравлический лаг, действие которого основано на измерении динамического давления воды, возникающего в приемном устройстве лага на ходу корабля. Наиболее часто встречаются гидродинамические лаги с раздельными трубками статического и полного давления, представителем которых является лаг ЛГ-25. Он состоит из трех основных частей: гидравлической, механической и электрической.

    Гидравлическая часть лага (рис. 30) состоит из трубки полного давления (статическое + динамическое), мембранного аппарата и трубки статического давления. Мембранный аппарат разделен мембраной на две полости — полного давления и статического давления. К мембране прикреплен шток, связанный с механизмом центрального прибора лага. Трубки полного и статического давления соединены с мембранным аппаратом так, чтобы мембрана воспринимала только динамическое давление. Действие статического давления в аппарате компенсируется тем, что оно в равной степени действует на мембрану и снизу и сверху.

    На ходу корабля скоростной напор воды через приемное отверстие трубки полного давления давит на мембрану, которая начинает перемещаться вместе со штоком вверх. Перемещаясь, шток воздействует на механическую часть центрального прибора, которая состоит из узла измерения скорости и узла измерения пройденного расстояния. Посредством механической и электрической передачи данные о величине давления на мембрану поступают на ось стрелки указателя скорости и прибор, регистрирующий пройденное кораблем расстояние.

    Гидравлические лаги достаточно точны, но следует иметь в виду, что пройденное расстояние дается ими с некоторой ошибкой. Ее величина зависит от скорости корабля, определяется на специально оборудованном участке моря, называемом мерной линией, и в виде поправки лага учитывается судоводителями при ведении прокладки. Созданы и успешно применяются на флотах индукционные лаги, также измеряющие скорость корабля (судна) относительно воды.

    Еще более совершенными и точными лагами являются гидроакустические и геомагнитные, которые учитывают перемещение плавающих объектов относительно Земли.

    5. Лоты и эхолоты

    Для измерения глубин на море применяются специальные приборы, называемые лотами. Они бывают ручные, механические и гидроакустические (эхолоты).

    Ручным лотом измеряют глубины до 50 м при скорости хода до 5 узлов. Ручной лот — это свинцовая или чугунная гиря с привязанным к ней лотлинем. Гиря в нижней части имеет углубление для вмазывания в него смеси толченого мела с салом или размятого мыла при определении характера грунта. На расстоянии 2–3 м от ушка гири в лотлинь вделывают клевант — колышек из дерева, за который лотовый держит лот перед бросанием. При разметке лотлиня за нуль принимают ушко гири и через 10 м вплеснивают флагдуки — куски материи с такой последовательностью цветов: 10 м — красный, 20 м — синий, 30 м — белый, 40 м — желтый, 50 м — бело-красный. Десятиметровые участки делят пополам и вплеснивают кожаные марки с «топориками». На расстоянии 5 м — марку с одним топориком, 15 м — с двумя, 25 м — с тремя и т. д. Каждый пятиметровый участок разбивают на метры и вплеснивают марки с зубчиками: с одним зубчиком — на местах, соответствующих 1,6,11,16 м и т. д. через 5 м; марку с двумя зубчиками — на местах, соответствующих 2, 7, 12 м и т. д. через 5 м; марку с тремя зубчиками — на местах, соответствующих 3, 8, 13 м и т. д. через 5 м. При надобности метровые участки разбивают на более мелкие участки с вплесниванием кожаных марок поменьше.

    Лот бросают со специальных лотовых площадок и обязательно с наветренного борта, поэтому необходимо постоянно тренироваться, чтобы уметь бросать лот как правой, так и левой рукой. Перед замером глубин лотовый обязательно надевает специальный пояс — брест-роп, конец от которого крепится на корабле.

    Кроме замера глубин, ручной лот используют для определения характера грунта, для обнаружения дрейфа корабля при стоянке на якоре, для замера осадки носом и кормой.

    При подходе корабля к месту якорной стоянки перед прохождением отмели, узкости и других опасных в навигационном отношении мест подается команда: «Лотовым на лот, приготовиться брать глубину!». Лотовый, заняв место, готовит лот: в руку, обращенную внутрь корабля, набирает 10–15 шлагов лотлиня, укладывая его так, чтобы лотлинь при работе мог свободно вытравливаться, гиря лота вываливается за борт и удерживается в подвешенном состоянии за клевант.

    По команде «Как глубина!» лотовый раскачивает гирю вдоль борта, с силой бросает ее по ходу корабля и начинает потравливать лотлинь. При касании гирей грунта лотлинь прекращает травиться. Лотовый быстро подбирает слабину лотлиня и в момент прохождения кораблем места слегка приподнимает гирю за лотлинь и ударяет ею о грунт, замечая при этом марку лотлиня у поверхности воды. Результаты замера лотовый сразу же докладывает на ходовой мостик: «Глубина 15 метров». Если гиря не дошла до грунта, а корабль проходит место падения гири — лотовый замечает марку у поверхности воды и докладывает: «Двадцать метров пронесло». Произведя один замер, лотовый быстро выбирает лот, набирая шлаги лотлиня, и повторяет все действия по замеру глубины. О характере грунта судят по частицам, прилипшим к салу (мылу), вмазанному в выемку основания гири.

    Ручной лот успешно используют для обнаружения дрейфа корабля, при стоянке его на якоре в свежую погоду. С этой целью лот опускают до грунта в носовой части корабля, дают некоторую слабину лотлиню и закрепляют его на палубе. Если через некоторое время лотлинь (при том же курсе корабля) окажется натянутым вперед, следовательно, якорь не держит (ползет).

    Замер глубины механическим лотом осуществляется следующим образом. На лотлине с грузом в море опускают стеклянную запаянную с одного конца трубку. Внутренние стенки трубки покрыты легко смывающейся краской. По мере погружения воздух в трубке сжимается под действием давления заполняющей ее воды. Вода, заполняя трубку до соответствующего глубине предела, смывает окраску со стенок трубки. Глубину определяют при помощи специальной шкалы, к которой прикладывают трубку после ее подъема. Недостатком этого лота является трудоемкость при измерении глубин.

    В настоящее время на кораблях устанавливаются эхолоты, принцип работы которых основан на измерении времени прохождения ультразвукового сигнала от вибратора-излучателя, установленного в днище корабля, до морского дна и обратно до вибратора-приемника, который расположен рядом с излучателем.

    Схема устройства эхолота приведена на рис. 31. Преобразователь электротока через сопротивление заряжает конденсатор, к которому через контакты подключена обмотка вибратора-излучателя. При замыкании этих контактов импульс тока высокого напряжения от конденсатора пойдет на обмотку излучателя, где вызовет появление переменного электромагнитного поля, и поверхность вибратора совершит несколько колебаний. Механические колебания вибратора в виде импульса передадутся воде и распространятся до морского дна. Отраженный сигнал импульса частично достигнет вибратора-приемника, вызовет колебания его намагниченного никелевого пакета, что наведет в нем небольшую электродвижущую силу. Возникшее на концах обмотки вибратора-приемника напряжение поступит на усилитель, где повысится до 500 В. С усилителя ток поступит на неоновую лампочку, которая даст короткую вспышку. Следовательно, измерение пройденного ультразвуковым импульсом расстояния в воде производится за время с момента замыкания контактов до момента вспышки неоновой лампочки. Скорость распространения ультразвука в воде принимается равной 1500 м/с. Для измерения столь малого времени в эхолотах используется специальное устройство, но измеряется не само время, а другая величина, которая зависит от него.

    Рис. 31. Схема действия эхолота: 1 — преобразователь электротока; 2 — сопротивление; 3 — конденсатор; 4 — вибратор-излучатель; 5 — контакты; 6 — вибратор-приемник; 7 — усилитель; 8 — неоновая лампочка; 9 — электродвигатель; 10, 11 — диск

    От электродвигателя с постоянной скоростью вращаются два диска. Диск 10 с помощью кулачка один раз за полный оборот замыкает контакты. Происходит посылка сигнала вибратором-излучателем, и на диске 11, на месте, которое в этот момент находится против неоновой лампочки, ставится знак 0. До прихода эхо-сигнала диск 11 успевает повернуться на некоторый угол, пропорциональный времени прохождения сигнала. С приходом эхо-сигнала неоновая лампочка даст вспышку и отметит на диске 11 место, соответствующее этому углу. Окружность диска 11 разбита на равномерные деления, обозначающие метры. Таким образом, включив в работу эхолот, показания глубины снимают с градуированной шкалы по вспышке неоновой лампочки. К эхолотам подключают приборы-самописцы, которые на специальной ленте непрерывной линией записывают глубину места, и получается линия рельефа дна по ходу корабля.

    6. Угломерные инструменты

    Одним из угломерных инструментов является навигационный секстан. Он используется для измерения высот небесных светил при определении координат корабля в море астрономическим методом, измерения горизонтальных углов между земными предметами при определении места корабля по двум углам и измерения вертикального угла предмета, высота которого известна, с целью определения расстояния до него.

    Устройство и принцип действия секстана основаны на следующих законах отражения света от плоских зеркал: 1) угол падения луча на плоское зеркало равен углу отражения; 2) луч падающий и луч отраженный находятся в одной плоскости с перпендикуляром к плоскости зеркала, восстановленным в точке падения.

    Измерение угла между двумя предметами (светило и горизонт или два предмета на берегу) сводится к определению угла наклона зеркал, когда прямо видимое и дважды отраженное изображения предметов видны совмещенными.

    Устройство секстана показано на рис. 32.

    Отсчет величины измеренного угла между предметами читается на градуированном лимбе (градусы), на от-счетном барабане (минуты) и на верньере (десятые доли минуты).

    При астрономических определениях координат корабля в море необходимо знать время с точностью до десятых долей секунды. Основным прибором, предназначенным для определения точного среднего гринвичского времени на кораблях, является хронометр — переносные пружинные часы наиболее точного изготовления. Хронометры обычно хранятся в штурманской рубке в специальных деревянных ящиках со стеклянными глухими крышками. Поправка хронометра определяется по специальным радиосигналам и записывается в хронометрический журнал, она должна быть известна в любой момент.

    Кроме хронометра для астрономических наблюдений и других мероприятий, требующих точного времени, могут быть использованы палубные часы, представляющие собой анкерные часы карманного типа. Они также хранятся в деревянном футляре и должны иметь свою поправку.

    С целью систематического контроля за правильностью показаний корабельных хранителей времени повседневная организация корабля предусматривает специальные обязанности определенным лицам экипажа.

    7. Радиотехнические средства кораблевождения

    Успешное решение задач, стоящих перед кораблями и судами, может быть достигнуто только в том случае, если их место в море известно с заданной точностью и известно при этом направление истинного меридиана. Для создания таких условий корабли и суда оснащаются аппаратурой радионавигационных систем.

    Рис. 32. Навигационный секстан: 1 — рама; 2 — лимб; 3 — большое зеркало; 4 — малое зеркало; 5 — астрономическая труба; 6 — алидада; 7 — отсчетный барабан; 8 — большой светофильтр; 9 — малый светофильтр; 10 — стойка. 11 — винт; 12 — рычаги зажима алидады; 13 — верньер (за отсчетным барабаном)

    Радионавигационными системами (РНС) называются технические средства, служащие для определения местоположения корабля с помощью радиоволн. Вся эта некогда фантастическая система (РНС) состоит из:

    передающей или принимающей радиостанции, размещенной в опорных неподвижных точках, координаты которых известны;

    приемоиндикаторов или приемопередающих станций, устанавливаемых на кораблях и других подвижных объектах, местоположение которых определяется;

    наземной аппаратуры контроля и управления опорными станциями.

    К средствам радионавигации кораблей (судов) относятся радиопеленгаторы, радиолокационные станции, приемоиндикаторы различных типов и радиосекстаны.

    Линиями положения в результате определения места корабля могут быть: направление (пеленг), окружность (т. е. расстояние), направление и расстояние одновременно или какая-либо другая более сложная кривая, например гипербола, и т. д.

    В зависимости от характеристики линии положения РНС подразделяются на: азимутальные — линия положения представляет собой прямой или обратный пеленг на опорную станцию; да льном ер ные — линии положения соответствуют расстояниям до опорных пунктов; разностно-дистанц ионные (гиперболические) — линии положения соответствуют равным разностям расстояний до опорных станций; комбинированные (например, азимутально-дистанционные) — линия положения является пеленгом на опорную станцию, по которому откладывается известное до нее расстояние. Как видим, разностно-дистанционные системы дальней радионавигации широко применяются как самостоятельно, так и в сочетании с другими навигационными средствами. Основным их достоинством является большая дальность действия, высокая точность обсервации и независимость от метеоусловий.

    Возможность получения конкретной линии положения и определенной измеренной величины зависит от применяемой длины волны и от размещения соответствующей аппаратуры. В действующей ныне РНС используются радиоволны почти всех диапазонов.

    Радионавигационные системы, обеспечивающие кораблю навигационные параметры на расстояниях свыше 600 км, относятся к РНС дальнего действия.

    Радиотехнические средства кораблевождения с дальностью действия до 50 км призваны обеспечивать безаварийное плавание кораблей в узкостях, по каналам и фарватерам.

    Размещение аппаратуры в одной точке при использовании отраженных радиоволн позволяет получить направление и расстояние до объекта. На этом принципе основана работа радиолокационных станций, полностью разрешающих проблему безаварийного прибрежного плавания судов.

    Направление, служащее линией положения, может быть получено и без отражения радиоволн, но для этого надо расположить аппаратуру в двух точках, связанных между собой радиоволнами. На этом принципе работают радиопеленгаторы и радиомаяки, т. е. при помощи радиопеленгаторов, установленных на кораблях, определяется пеленг на радиомаяк, излучающий радиосигналы из определенной точки.

    Размещение аппаратуры в нескольких точках, образующих единую систему и связанных радиоволнами с кораблем, ведущим определение своего места, позволяет получить гиперболические (разностно-дистанционные) или другие линии положения.

    Неподвижность опорных станций не является обязательным условием успешного применения радиотехники в целях навигации. Чрезвычайно важно только то, чтобы в процессе определения направлений на опорные точки или взятия до них расстояний их координаты были известны.

    Широкое применение радионавигационных систем объясняется тем, что они обеспечивают высокую точность определения места судов в любой точке Мирового океана, независимы от условий погоды, видимости.

    III

    ЛОЦИЯ

    Лоция изучает вопросы обеспечения безопасности мореплавания. Лоциями называются такие специальные книги, относящиеся к общим руководствам для плавания, в которых подробно описаны физико-географические особенности морей, океанов или отдельных участков прибрежной полосы.

    1. О сведениях, содержащихся в лоции

    Описание участка берега включает следующие вопросы: вид берега с моря (рельеф, растительность, наличие населенных пунктов и т. п.); характер побережья (обрывистый, низменный, холмистый и т. п.); изрезанность береговой черты, перечень бухт, заливов и проливов, наиболее важных в навигационном отношении; перечень наиболее приметных пунктов (с указанием их положения и вида), которые можно использовать для определения места корабля при плавании вдоль описываемого побережья; наличие около берега островов и опасностей; критическая глубина или расстояние, на которое можно приближаться к берегу; наличие портов, гаваней, якорных мест, где можно найти укрытие от штормов;

    характеристика гидрометеорологических элементов, влияющих на условия плавания вдоль берега.

    При описании рейда (якорного места) должны быть указаны: расположение рейда и его размеры; размеры и осадка кораблей, для которых доступен рейд (якорное место); защищенность рейда от ветров и волнения; глубины, рельеф дна и грунт; характеристика гидрометеорологических элементов; сообщение с берегом; порядок обеспечения кораблей, стоящих на рейде, водой, топливом и продовольствием; наиболее удобные места стоянки на якоре, наличие швартовных бочек, специальных якорных мест (карантинных, для кораблей и судов со взрывоопасным грузом и т. п.); различные рекомендации, обеспечивающие безопасность кораблей, стоящих на якоре; районы, запретные для плавания и якорной стоянки; наставления для входа на рейд и для подхода к якорным местам.

    Описание навигационных опасностей включает следующее: координаты опасности, близость к фарватеру или якорному месту; наименьшая глубина (банки, мели и др.); грунт; внешние признаки, по которым можно определить положение опасности: осыхание, буруны, быстрины, нагромождение льда, птичьи базары, водоросли, отличительный цвет воды и т. п.; рельеф дна на подходах к опасности; ограждение; створы естественных ориентиров и пеленги на приметные пункты, ограждающие опасности; рекомендации для плавания в районе опасности.

    При описании средств навигационного оборудования (СНО) указываются: название средства навигационного оборудования; его положение (координаты), с какого направления открывается видимость и ее дальность; вид и окраска сооружения; цвет и характер огня; высота маяка (знака) от основания и высота огня над уровнем моря; средства звуковой туманной сигнализации; наличие радиомаяка и звуковых средств связи; время постановки и снятия плавучего ограждения.

    В лоции также подробно описываются земной магнетизм, характерные изображения отдельных участков берега, мысов и т. п. на экране радиолокатора, гидрометеорологические явления (течения постоянные, приливоотливные, ветровые, водовороты, сулои), туманы и т. п.

    К общим руководствам для плавания относятся также книга «Огни и знаки», в которой дается подробное описание характеристик огней маяков и дневных специальных ориентиров, установленных на соответствующем театре.

    Обеспечению безопасности мореплавания служат также специальные руководства, к которым относятся: навигационно-гидрографические обзоры, правила плавания в отдельных районах, портах, бухтах и т. п. На корабли систематически поступают навигационные извещения мореплавателям — НАВИМы, по которым проводится корректура карт и навигационных руководящих документов — пособий.

    Кроме описанных выше руководств и пособий, в помощь мореплавателям издаются справочные и вычислительные материалы, к которым относятся: условные знаки, каталоги карт и книг, гидрометеорологические атласы, мореходные таблицы (МТ), Морской астрономический ежегодник (МАЕ), таблицы высот и азимутов светил и таблицы приливов.

    2. Навигационные опасности и плавучие предостерегательные знаки

    Для ориентировки мореплавателей и предоставления им возможности определения места своего корабля, указат ния кромок фарватеров, обозначения начальных точек и оси фарватера (канала) и середины прохода, а также для ограждения навигационных опасностей устанавливаются маяки, огни и знаки, именуемые средствами навигационного оборудования (СНО). Они подразделяются по следующим признакам:

    по месту установки — на береговые и плавучие;

    по назначению — для определения места корабля, обозначения оси фарватеров (каналов), середины прохода (осевые), ограждения навигационных опасностей и др.;

    по техническому устройству — на зрительные, звуковые, радиотехнические, с радиолокационными отражателями и т. п.;

    по дальности действия — на средства дальнего действия и ближнего.

    К береговым средствам навигационного оборудования относятся: береговые маяки, огни, светящие и несве-тящие навигационные знаки, створы, береговые башни

    и т. п. Нанесенные на навигационные карты береговые средства навигационного оборудования имеют точные координаты, подробно описаны в лоции и книге «Огни и знаки» и являются надежными ориентирами для определения места корабля в море.

    К плавучим средствам навигационного оборудования относятся: плавучие маяки, буи, бочки и вехи. Маяки и бочки выставляются в специально для них определенных точках, а знаки ограждения опасностей — как можно ближе к навигационным опасностям или непосредственно над ними.

    Навигационные опасности подразделяются на опасности морского дна (мель, отмель, подводная коса, бар, риф, банка) и случайные опасности (затонувшие суда, невытраленные мины, сваи, сети и т. п.).

    С 1981 года в водах СССР действует новая система навигационного оборудования плавучими предостерегательными знаками — «Система МАМС — регион А», согласно которой отдельно лежащие и простирающиеся от береговой черты навигационные опасности ограждаются кардинальными знаками, выставляемыми в одном, нескольких или во всех секторах относительно стран света от опасности, и обозначают сторону, с какой эту опасность надо обходить. В этом заключается принципиальное отличие новой системы от старой и это следует твердо запомнить.

    Таблица условных обозначений характера огня в руководствах для плавания и на картах
    Характер огня Условные обозначения Условные обозначения
    русское международное
    Проблесковый Пр FI
    Групповой проблесковый Пр(2) FI(2)
    Длительно-проблесковый Дл Пр LFI
    Чистый (часто проблесковый) Ч Q
    Групповой частый Ч(3) Q(3)
    Ч(9) Q(9)
    Групповой частый с длительным проблеском Ч(6)ДлПр Q(6)LFI
    Сложный групповой проблесковый Пр(2+1) FI(2+1)

    Примечание. Частый огонь имеет частоту 50 или 60 проблесков в минуту.

    Плавучие знаки навигационного оборудования представляют собой бочки, вехи, а также буи сигарообразной или столбовидной формы или ажурные фермы типа усеченной пирамиды, установленные на плавучесть. Буи оборудуются установленными для них белыми, желтыми, зелеными или красными проблесковыми огнями с определенной характеристикой. Каждый плавучий знак системы навигационного оборудования венчает топовая фигура в виде шара (шаров), цилиндра, треугольника (комбинации из треугольников) или крестовины (приложение 2).

    Для ограждения левой и правой стороны фарватеров применяются латеральные знаки системы. Левой и правой стороной фарватера называется та сторона, которая находится соответственно слева или справа от корабля (судна), идущего по фарватеру с моря. В местах, где направление с моря судоводителям определить затруднительно, на навигационные карты наносится определенный указатель сторон фарватера в виде стрелки, имеющей фиолетовое окаймление, впереди которой слева напечатан красный кружок (цвет ограждения левой стороны), а справа — зеленый кружок (цвет правой стороны).

    Стороны фарватеров ограждаются буями или вехами, имеющими соответствующую стороне окраску. На корпусы буев могут быть нанесены цифры или буквы, дающие возможность судоводителям знать свое местонахождение, так как подобные цифры (буквы) соответствующих буев оттиснуты на навигационных картах. Нумерация буев ведется со стороны моря, причем четные номера присваиваются буям ограждения левой стороны фарватера, а нечетные — буям правой стороны.

    В местах разделения фарватеров, ведущих с моря, могут выставляться видоизмененные латеральные знаки, указывающие основной (предпочтительный) фарватер. Буи и вехи, ограждающие отдельные опасности морского дна незначительных размеров и случайные навигационные опасности, могут быть обойдены с любой стороны.

    Знаки «Системы МАМС — регион А» специального назначения применяются для обозначения или ограждения специальных районов или объектов, описание которых содержится в лоциях.

    Термин «Новая опасность» применяется к впервые обнаруженным опасностям, еще не показанным на картах, не описанным в руководствах для плавания и не объявленным в извещениях мореплавателям. К новым опасностям относятся естественные; или искусственные препятствия (скалы, банки, затонувшие суда и т. п.). Новые опасности ограждаются кардинальными знаками или латеральными знаками с их штатными характеристиками огней. При ограждении новых опасностей, представляющих собой серьезную угрозу мореплаванию, хотя бы один из ограждающих знаков дублируется: Дублирующий знак может быть оборудован радиолокационным маяком-ответчиком с опознавательным сигналом Д (—..) длиной 1 миля в масштабе развертки радиолокационной станции. Дублирующий знак может быть снят после того, как информация об опасности будет достаточно надежно доведена до мореплавателей.

    IV

    ОБЩЕЕ МАНЕВРИРОВАНИЕ

    Эта дисциплина кораблевождения тесно связана с навигацией и лоцией. Только с применением умелого и решительного маневра кораблем командир и вообще судоводитель может успешно выполнить поставленную перед ним задачу.

    Маневренность корабля — это его способность быстро изменять направление и скорость своего движения под действием работы рулевого устройства и движителей.

    Для умелого и грамотного с точки зрения морской практики маневрирования в различных условиях плавания судоводитель должен учитывать навигационную и гидрометеорологическую обстановку, соотношение осадки корабля и глубины, состояние видимости и разрешающую способность средств зрительного и технического наблюдения, обстановку на местности (акватории), чувствовать поведение своего корабля, твердо знать его маневренные элементы (инерцию, тормозной путь, рыскливость, диаметр циркуляции и др.), от чего зависит их изменение (от загрузки, парусности, крена, дифферента и т. п.), на основании чего своевременно и решительно отдавать приказания на руль, в машинное отделение, боцману, стоящему на отдаче (выборке) якоря, сигнальщику и другим постам, которые могут повлиять на направление и скорость движения корабля или указать другим кораблям и судам, находящимся в, зоне видимости, на действия, предпринимаемые маневрирующим кораблем.

    Маневрирование с целью предупреждения столкновения с другим кораблем должно быть настолько эффективным и заметным для других, чтобы заканчивалось расхождение на безопасном расстоянии.

    Успех задуманного командиром маневра зависит также от исправности средств общей и внутрикорабель-ной сигнализации и связи, постоянной готовности к действию исполнительных механизмов, устройств и приборов, от слаженности исполнения своих обязанностей каждым членом экипажа.

    Вопросами общего маневрирования занимаются, в частности, новые Международные правила предупреждения столкновения судов в море (МППСС-72), вошедшие в действие в 12 ч поясного времени 15 июля 1977 года и имеющие силу закона для стран — участниц Международной конференции в Лондоне, организованной Межправительственной морской консультативной организацией (ИМКО).

    МППСС-72 предусматривают все возможные варианты вплоть до установления в районах Мирового океана с повышенной интенсивностью судоходства раздельных путей для судов, идущих во встречных направлениях, введения односторонних рекомендованных путей, выбора безопасной скорости и т. п., что призвано обеспечить безопасность плавания и уверенное маневрирование при расхождении со встречными судами, рассматривают общие принципы маневрирования кораблей и судов с целью избежания их столкновения в. море. Все маневры кораблей и судов, находящихся на виду друг у друга, должны предваряться и сопровождаться подачей соответствующих звуковых и световых сигналов, предписанных статьей 34 МППСС-72.

    Кроме общего маневрирования, предписанного новыми Международными правилами предупреждения столкновения судов в море, случаются ситуации, при которых выполняется рекомендованное и специальное маневрирование. Рекомендованное маневрирование по заранее продуманной инструкции применяется при спасении упавшего за борт человека по сигналу «Человек за бортом»; при уклонении от плавающей мины, при уклонении от торпеды и т. п.

    Корабли Военно-Морского Флота могут выполнять специальные маневры при использовании ими оружия, при построении соединения кораблей в соответствующий ордер и др.

    Даже в этой краткой информации об общем маневрировании просматривается важность твердого знания судоводителями новых Международных правил предупреждения столкновения судов в море и необходимость их беспрекословного выполнения.

    Полезные советы штурману

    1. Каждый судоводитель должен всегда помнить, что постоянная бдительность — залог безопасности плавания.

    2. При плавании в плохую видимость и других обстоятельствах, затрудняющих точное определение местонахождения судна, считайте себя всегда ближе к опасности.

    3. При вычислениях помните слова академика А. Н. Крылова: «Всякая неверная цифра — ошибка, а всякая лишняя цифра — половина ошибки».

    4. Тщательно продуманная и рационально составленная схема помогает быстро и точно производить вычисления при решении задач по кораблевождению, уменьшает возможность допущения ошибки.

    5. Непрерывно, правильно и как можно полнее отражайте в вахтенном и навигационном журнале деятельность корабля во всех ее проявлениях, а также объективные условия и обстоятельства, сопровождающие эту деятельность как во время плавания, так и во время стоянки. Адмирал С. О. Макаров рекомендовал «вывесить на поучение молодежи в каждой штурманской рубке» слова офицера Будрина, характеризующие лучшие качества штурманов русского флота: «Пишем, что наблюдаем, а чего не наблюдаем, того не пишем».

    6. При всякой предоставившейся возможности определяйте поправку компаса и лага.

    7. Не менее четырех раз за вахту сличайте показания главного и путевого компасов.

    8. Через 10 минут после поворота на новый курс проверьте курс корабля по главному компасу.

    9. Не забывайте вводить поправку лага в счисление пути корабля.

    10. Вступив на вахту, проверьте курс корабля по главному компасу, соответствие истинного курса и общей поправки на курс с прокладкой на карте.

    11. Перед входом в туман и при других обстоятельствах, могущих ухудшить видимость, возможно точнее определите место корабля, проверьте готовность средств подачи туманных сигналов согласно МППСС-72, усильте наблюдение.

    12. Помните, что наличие радиолокатора не освобождает судоводителя, находящегося на вахте, от тщательного наблюдения за горизонтом и водной поверхностью при любых условиях видимости.

    13. Перед заходом солнца не забудьте проверить исправность ходовых огней на ходу корабля и якорных при стоянке на якоре, а также готовность к действию запасных фонарей.

    14. Перед выходом в море и при наступлении шторма тщательно проверьте надежность крепления груза и всех предметов на верхней палубе, а также герметичность и надежность водонепроницаемых закрытий.

    15. При прохождении узкости сбавьте ход до малого, сыграйте тревогу, включите эхолот.

    16. Систематически, а в штормовую погоду возможно чаще, производите замер высоты воды в льялах.







     

    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх