Глава 5. Агрессия: стабильность и эгоистичная машина

Эта глава посвящена главным образом агрессии — теме, связанной с множеством недопониманий и недоразумений. Мы по-прежнему будем рассматривать индивидуум как эгоистичную машину, запрограммированную на то, чтобы как можно лучше обеспечивать свои гены в целом. Такой подход принят для удобства. В конце главы мы вновь заговорим на языке отдельных генов.

Для любой машины выживания другая такая машина (если это не ее собственный детеныш или близкий родственник) составляет часть ее среды обитания, подобно горе, реке или чему-то съедобному. Это нечто, преграждающее путь, или нечто, что можно использовать. От горы или реки она отличается лишь в одном: она склонна давать сдачи. Такое поведение объясняется тем, что эта другая машина также содержит свои бессмертные гены, которые она должна сохранить во имя будущего, и тем, что она также не остановится ни перед чем, чтобы сохранить их. Естественный отбор благоприятствует тем генам, которые управляют своими машинами выживания таким образом, чтобы те как можно лучше использовали свою среду. Сюда входит и наилучшее использование других машин выживания, относящихся как к собственному, так и к другим видам.

В некоторых случаях одни машины выживания, по-видимому, довольно мало посягают на жизнь других таких машин. Например, кроты и черные дрозды не поедают друг друга, не спариваются между собой и не конкурируют за жизненное пространство. Тем не менее нельзя считать, что они совершенно обособлены друг от друга. Они могут конкурировать за какой-нибудь ресурс, например за дождевых червей. Это не означает, что можно когда-нибудь увидеть схватку между кротом и дроздом за червя; на самом деле может статься, что дрозду за всю его жизнь никогда не доведется увидеть ни одного крота. Но если уничтожить всю популяцию кротов, то это может сильнейшим образом повлиять на дроздов, хотя я не рискну высказывать предположения о деталях такого влияния или о том, какими извилистыми косвенными путями оно будет происходить.

Машины выживания разных видов воздействуют друг на друга разнообразными способами. Они могут выступать в роли хищников или жертв, паразитов или хозяев, конкурентов за какой-нибудь ограниченный ресурс. Они могут использоваться специфическим образом, как, например, пчелы, служащие переносчиками пыльцы с цветка на цветок.

Машины выживания, относящиеся к одному и тому же виду, более непосредственно покушаются на жизнь одна другой. Причин этому много. Одна из них заключается в том, что половину популяции собственного вида данного индивидуума составляют потенциальные брачные партнеры или потенциальные усердно работающие и пригодные для эксплуатации родители его потомков, трудами которых можно воспользоваться. Другая причина состоит в том, что представители одного и того же вида, будучи очень сходными между собой и являясь машинами для сохранения генов, которые живут в одинаковых местообитаниях и ведут один и тот же образ жизни, самым прямым образом конкурируют за все необходимые ресурсы. Крот может быть конкурентом для дрозда, но далеко не столь серьезным, как другой дрозд. Кроты могут конкурировать с дроздами за червей, но дрозды с дроздами конкурируют как за червей, так и за все остальное. Если они принадлежат к одному и тому же полу, то они могут конкурировать также за брачных партнеров. По причинам, которые мы рассмотрим в дальнейшем, конкуренция обычно происходит между самцами за самок. Это означает, что самец может обеспечить сохранение своих генов, если он нанесет какой-то ущерб другому самцу, с которым он конкурирует.

Логичный образ действия для машины выживания состоит, по-видимому, в том, чтобы убивать своих соперников, а затем лучше всего съедать их. Хотя убийство и каннибализм встречаются в природе, они не столь обычны, как можно было бы ожидать, исходя из примитивной интерпретации теории эгоистичного гена. И в самом деле, в книге «Об агрессии» Конрад Лоренц подчеркивает сдержанность и благородство. проявляемые животными в драках. Для Лоренца самая примечательная особенность схваток между животными состоит в том, что это формальные состязания, происходящие, подобно боксу или фехтованию, строго по правилам. Животные дерутся в перчатках и тупыми рапирами. Угрозы и блеф заменяют подлинную беспощадность. Если противник своим поведением признает поражение, то победитель воздерживается от нанесения смертельного удара или укуса, вопреки тому, что могла бы предсказать наша примитивная теория.

Интерпретация агрессии животных как сдержанной и формальной может вызвать возражения. В частности, несправедливо, конечно, осуждать бедного старину Homo sapiens как единственный вид, убивающий себе подобных, как единственного наследника каиновой печати, и предъявлять ему такие мелодраматические обвинения. Что именно отмечает натуралист — сдержанность или неистовость животных — зависит отчасти от того, за какими видами животных он наблюдает, а отчасти от его взглядов на эволюцию вообще — ведь Лоренц в конечном счете сторонник концепции «во благо вида». Пусть представление о драках животных как о «джентльменских» поединках несколько преувеличено, но в нем несомненно есть по крайней мере немножко правды. На первый взгляд это вылядит как одна из форм альтруизма. Теория эгоистичного гена должна быть готова к нелегкой задаче дать этому объяснение. Почему животные при каждой представившейся возможности не вступают в бой, чтобы убивать соперников, принадлежащих к их собственному виду?

На это можно, вообще говоря, ответить, что откровенная драчливость дает не только какие-то преимущества; за нее приходится расплачиваться, причем плата не ограничивается такими очевидными расходами, как потеря времени и энергии. Допустим, например, что индивидуумы B и C — мои соперники и что я случайно встретил B. Мне как эгоистичному индивидууму могло бы показаться разумным убить его. Не будем, однако, спешить. С также мой соперник, но он Одновременно и соперник B. Убив B, я тем самым окажу услугу C, убрав одного из его соперников. Может быть, лучше не убивать B, потому что он мог бы в таком случае вступить в конкуренцию или в драку с C, что косвенным образом оказалось бы благоприятным для меня. Мораль, вытекающая из этого простого гипотетического примера, сводится к тому, что пытаться убивать соперников без разбора не всегда целесообразно. В обширной и сложной системе соперничества удаление со сцены одного соперника необязательно окажется полезным: другие соперники могут выиграть от его гибели больше, чем тот, кто его убил. В этом убеждаются специалисты по борьбе с вредителями на собственном горьком опыте: выработав эффективный метод борьбы с серьезным вредителем какой-нибудь сельскохозяйственной культуры и радостно искоренив его, они обнаруживают, что другой вредитель выиграл от гибели уничтоженного вредителя гораздо больше, чем человек, и сельское хозяйство в конечном счете стало терять больше, чем прежде.

Однако в других ситуациях убивать соперников или по крайней мере вступать с ними в драку представляется вполне разумным. Если B — морской слон, имеющий большой гарем из многочисленных самок, а я — другой морской слон — могу, убив его, заполучить этот гарем, то мне безусловно следует попытаться сделать это. Но даже такая избирательная драчливость сопряжена с риском и потерями. В выгодно нанести ответный удар, чтобы защитить свою ценную собственность. Если я начинаю драку, то у меня столько же шансов погибнуть, как и у него, а может быть, даже больше. Он владеет ценным ресурсом и именно поэтому я хочу вступить с ним в драку. Но почему он владеет этим ресурсом? Вероятно, он завоевал его в бою. Возможно, он сумел победить других претендентов, пытавшихся с ним драться до меня. По-видимому, он хороший борец. Даже если я выйду победителем и получу гарем, я, может быть, буду так покалечен в драке, что не смогу воспользоваться плодами своей победы. Кроме того, драка требует затрат времени и энергии. Может быть, лучше их пока поберечь. Если я в течение некоторого времени постараюсь побольше есть и не ввязываться в драки, то я подрасту и наберусь сил. В конце концов я буду драться с ним за гарем, но мои шансы на победу станут выше, если я подожду, чем если я ввяжусь в драку сейчас.

Произнося этот монолог, я просто пытался показать, что решению о том, вступать или не вступать в драку, в идеале должны предшествовать сложные, хотя и неосознанные расчеты «расход-приход». Не все потенциальные выгоды можно получить, вступив в драку, хотя некоторый выигрыш она несомненно может принести. Точно так же в процессе драки каждое тактическое решение о том, наращивать ли усилия или понизить накал страстей, связано с потерями или выгодами, которые в принципе также поддаются анализу. Эта идея давно бродила в умах этологов, однако лишь Мэйнарду Смиту, которого обычно не считают этологом, удалось выразить ее ясно и убедительно. Совместно с Дж. Прайсом (G. R. Price) и Дж. Паркером (G. A. Parker) он использует в своих исследованиях область математики, известную под названием теории игр. Их элегантные идеи можно описать с помощью слов, не прибегая к математическим символам, хотя при этом придется несколько поступиться строгостью.

Главная концепция, которую вводит Мэйнард Смит, — это концепция эволюционно стабильной стратегии; ее идея, как он считает, была заложена работами У. Гамильтона и Р. Мак-Артура (R. H. MacArthur). «Стратегия» — это предварительно запрограммированная линия поведения. Вот пример стратегии: «Нападай на противника; если он спасается бегством — преследуй его; если он наносит ответный удар — убегай от него». Важно понимать, что стратегия не рассматривается как нечто, сознательно разработанное индивидуумом. Помните, что мы говорим о животном как об автоматической машине выживания, снабженной компьютером, который контролирует действия мышц по заложенной в него программе. Сформулировать стратегию в виде набора простых инструкций, используя обычные слова, — это всего лишь удобный способ размышлять о ней. С помощью какого-то точно не установленного механизма животное ведет себя так, как если бы оно следовало этим инструкциям.

Эволюционно стабильная стратегия, или ЭСС, определяется как стратегия, которая, если она будет принята большинством членов данной популяции, не может быть превзойдена никакой альтернативной стратегией [5.1]. Это очень тонкая и важная идея. Ее можно выразить и по-иному, сказав, что наилучшая стратегия для данного индивидуума зависит от действий большинства членов популяции. Поскольку остальная популяция состоит из индивидуумов, каждый из которых стремится максимизировать свой собственный успех, единственной стратегией, способной сохраниться, будет та, которая, возникнув однажды в процессе эволюции, не может быть улучшена одним отклоняющимся индивидуумом. В случае какого-либо крупного изменения в окружающей среде может возникнуть короткий период эволюционной нестабильности и даже колебаний численности популяции. Но после того, как возникнет ЭСС, она будет сохраняться: отклонение от нее будет наказываться отбором.

Для того чтобы приложить эту идею к агрессии, рассмотрим один из простейших гипотетических случаев, приводимых Мэйнардом Смитом. Допустим, что в некой популяции данного вида соперничающие индивидуумы используют только две стратегии, названные стратегией ястреба и стратегией голубя. (Эти названия использованы в том смысле, в каком их обычно применяют к людям, и совершенно не связаны с особенностями биологии соответствующих птиц: голуби на самом деле довольно агрессивные птицы.) Каждый индивидуум нашей гипотетической популяции получает звание Ястреба или Голубя. Ястребы всегда дерутся так неистово и безудержно, как только могут, отступая лишь при серьезных ранениях. Голуби же ограничиваются угрозами, с достоинством соблюдая все условности, и никогда не наносят противнику повреждений. Если Ястреб сражается с Голубем, то Голубь быстро убегает, оставаясь таким образом невредимым. Если Ястреб дерется с Ястребом, то драка продолжается до тех пор, пока один из соперников не получит серьезной раны или не будет убит. Если Голубь сталкивается с Голубем, то ни один из них не страдает. Они долго выступают друг перед другом, принимая разные позы, пока один из них не устанет или не решит, что ему не стоит продолжать противостояние, а лучше отступить. Пока что мы исходим из допущения, что индивидуум не может заранее решить, с кем ему предстоит драться — с Ястребом или Голубем. Он обнаруживает это только в процессе драки и не может воспользоваться опытом прошлых драк с определенными индивидуумами, так как не помнит о них.

Произведем теперь чисто произвольную оценку результатов конфликта: 50 очков за выигрыш, 0 — за проигрыш, –100 за серьезную рану и –10 — за потерю времени в длительном поединке. Можно считать, что эти очки непосредственно конвертируются в валюту, которой является выживание генов. Индивидуум, получивший высокие оценки, т. е. имеющий в среднем большой выигрыш, это тот индивидуум, который оставляет после себя большое число своих генов в генофонде. Точные численные значения не имеют значения для нашего анализа, но они помогают нам размышлять о рассматриваемой проблеме.

Важно указать, что нас не интересует, побьют ли Ястребы Голубей, когда они дерутся. Ответ нам уже известен: Ястребы всегда побеждают. Мы хотим узнать, какая стратегия является стабильной — стратегия Ястребов или стратегия Голубей. Если одна из них представляет собой ЭСС, а другая — нет, то следует ожидать, что эволюционировать будет та, которая соответствует ЭСС. Теоретически возможно существование двух ЭСС. Это будет справедливо в том случае, если, независимо от того, какой стратегии-Ястреба или Голубя — следует большинство индивидуумов в популяции, наилучшей стратегией для каждой данной особи будет именно она. Тогда популяция будет стремиться к сохранению того из своих двух стабильных состояний, которого она достигла раньше. Однако, как мы сейчас увидим, ни одна из этих двух стратегии — Ястреба или Голубя — не будет в действительности сама по себе эволюционно стабильной и поэтому не следует ожидать, что та или другая будет эволюционировать. Для того чтобы показать это, нам следует вычислить средние выигрыши.

Допустим, что рассматриваемая популяция целиком состоит из одних Голубей. В их драках пострадавших не бывает. Состязания представляют собой длительные ритуальные турниры, что-то вроде игры в «гляделки», которые заканчиваются только тогда, когда один из противников отступает. Победитель получает 50 очков — цена ресурса, из-за которого возникла драка, но он платит штраф, равный –10, за потерю времени на длительный турнир, так что его выигрыш в конечном счете равен 40 очкам. Побежденный также платит штраф (–10) за потерянное время. В среднем следует ожидать, что каждый отдельный Голубь победит в половине турниров, а в половине проиграет. Поэтому его средний выигрыш за один турнир равен среднему между +40 и –10, т. е. +15. Таким образом, каждый отдельный Голубь в популяции, очевидно, существует вполне благополучно.

Допустим теперь, однако, что в популяции в результате мутации появился Ястреб. Поскольку этот Ястреб — единственный в округе, во всех его драках в роли противника может выступать только Голубь. Ястребы всегда побеждают Голубей, так что он получает 50 очков за каждую драку и его средний выигрыш равен +50. Он обладает огромным преимуществом над Голубями с их чистым выигрышем +15. В результате гены Ястреба быстро распространяются в популяции. Но теперь уже Ястреб не может рассчитывать на то, что каждым его противником будет Голубь. В экстремальном случае — если ястребиные гены распространяются так успешно, что вся популяция оказывается состоящей из Ястребов, — все драки теперь будут происходить между двумя Ястребами. Положение вещей резко изменилось. При драке Ястреба с Ястребом один из них получает тяжкие повреждения, оцениваемые как –100, тогда как выигрыш победителя составляет +50. Каждый Ястреб в популяции Ястребов может рассчитывать выиграть половину сражений и половину проиграть. Поэтому его ожидаемая средняя оценка за одну драку равна среднему между +50 и –100, т. е. –25. Рассмотрим теперь случай, когда в популяции Ястребов появился один Голубь. Конечно, он оказывается побежденным во всех драках, но при этом остается невредимым. Его средний выигрыш в популяции Ястребов равен 0, тогда как средний выигрыш Ястреба в популяции Ястребов равен –25. Поэтому голубиные гены будут иметь тенденцию распространиться в популяции.

На основании всего этого создается впечатление, что в популяции непрерывно происходят колебания. Ястребиные гены достигают превосходства; затем, вследствие преобладания в популяции Ястребов, преимущество получают голубиные гены, численность которых возрастает до тех пор, пока ястребиные гены снова не начнут процветать, и так далее. Однако в таких колебаниях нет нужды. Между Ястребами и Голубями существует стабильное соотношение. Для используемой нами произвольной системы очков стабильное соотношение между Голубями и Ястребами составляет 5/12: 7/12 По достижении такого стабильного соотношения средний выигрыш для Ястребов точно равен среднему выигрышу для Голубей. Поэтому отбор не оказывает предпочтения ни тем, ни другим. Если число Ястребов в популяции начнет возрастать, так что их доля станет выше 7/12 у Голубей начнет возникать дополнительное преимущество и соотношение вернется к стабильному состоянию. Подобно тому, как стабильное соотношение полов равно 50:50, так и стабильное соотношение Ястребов и Голубей в данном гипотетическом примере равно 7:5. В обоих случаях колебания вблизи стабильной точки, если они имеются, не будут слишком сильными.

На первый взгляд все это немножко смахивает на групповой отбор, но на самом деле не имеет с ним ничего общего. Мысль о групповом отборе возникает потому, что позволяет представить себе существование некоего состояния стабильного равновесия, к которому популяция стремится вернуться в случае его нарушения. Однако ЭСС гораздо более сложная концепция, чем групповой отбор. Она никак не связана с тем, что некоторые группы могут быть более удачливыми, чем другие. Это можно хорошо проиллюстрировать, используя систему произвольных очков в приведенном гипотетическом примере. Средний выигрыш для любого индивидуума — будь то Ястреб или Голубь — в стабильной популяции, состоящей на 7/12 из Ястребов и на 5/12 из Голубей, равен 6 1/4. Но 6 1/4 г.раздо меньше среднего выигрыша для Голубя в популяции из одних Голубей [15]. Если бы только все согласились быть Голубями, то это пошло бы на пользу каждому отдельному индивидууму. Путем простого группового отбора любая группа, все члены которой с общего согласия примут стратегию Голубя, достигнет гораздо большего успеха, чем соперничающая с ней группа, придерживающаяся соотношения, обеспечивающего ЭСС. (На самом деле сговор не прибегать ни к чему другому, кроме стратегии Голубя, не обеспечивает группе максимально возможный успех. Если группа состоит на 1/6 из Ястребов и на 5/6 из Голубей, то средний выигрыш на одну драку будет равен 16 2/3. Это наиболее выгодное соотношение, но в данном случае мы его касаться не будем. Более простой вариант — одни лишь Голуби, — обеспечивающий каждому индивидууму средний выигрыш 15 очков, гораздо выгоднее каждому отдельному индивидууму, чем ЭСС.) Поэтому теория группового отбора предскажет тенденцию к сговору, по которому все должны придерживаться стратегии Голубя, поскольку группа, состоящая на 7/12 из Ястребов, достигает меньшего успеха. Беда, однако, в том, что все сговоры, даже те, которые в конечном счете выгодны всем, не защищены от злоупотреблений. Что из того, если каждому лучше состоять в группе из одних Голубей, чем в группе ЭСС? Но, к сожалению, оказаться в такой группе единственным Ястребом настолько хорошо, что эволюцию Ястребов не остановить ничем. Договор, таким образом, будет нарушен в результате измены в собственном стане. ЭСС стабильна не потому, что она так уж хороша для участвующих в ней индивидуумов, а просто потому, что она гарантирует от измены в своих рядах.

Люди могут заключать пакты и вступать в заговоры, сулящие выгоду всем участникам, даже если эти пакты нестабильны в смысле ЭСС. Это возможно, однако, лишь потому, что каждый индивидуум ориентируется на свое осознанное предвидение и способен понять, что выполнение условий пакта в его собственных долговременных интересах. Даже при заключении соглашений между людьми постоянно существует опасность, что сиюминутная выгода от их нарушений может быть очень велика и соблазн окажется всепоглощающим. Быть может, наилучшим примером служит установление твердых цен. Установление стандартных искусственно завышенных цен на бензин соответствует долгосрочным интересам владельцев индивидуальных автозаправочных станций. Объединения торговцев, проводящих эту акцию, в основе которой лежит осознанная оценка долговременных интересов, могут сохраняться на протяжении достаточно длительных периодов времени. Слишком часто, однако, кто-то уступает соблазну быстро разбогатеть, снизив у себя цену. Его соседи немедленно делают то же самое, и волна снижения цены распространяется по всей стране. К сожалению для остальных граждан, осознанное предвидение владельцев автозаправочных станций затем вновь утверждается и они заключают новое соглашение о твердых ценах. Таким образом, даже у человека — вида, способного к осознанному предвидению, — соглашения, основанные на обеспечении наилучших долгосрочных интересов, постоянно стоят на краю гибели вследствие измены в собственном стане. Еще труднее понять возможные способы развития стратегий, обеспечивающих благоденствие группы или согласованные действия у диких животных, поведение которых контролируется конкурирующими генами. Следует ожидать, что эволюционно стабильная стратегия распространена повсеместно.

В нашем гипотетическом примере мы исходили из допущения, что каждый индивидуум может быть либо Ястребом, либо Голубем, и получили эволюционно стабильное соотношение Ястребов и Голубей. На практике это означает, что в генофонде достигается стабильное соотношение ястребиных и голубиных генов. На языке генетики такое состояние называют стабильным полиморфизмом. В той мере, в какой это касается состязаний, в точности такой же ЭСС можно достигнуть без полиморфизма при следующих условиях. Если каждый индивидуум способен вести себя в каждом отдельном состязании либо как Ястреб, либо как Голубь, то может быть достигнута ЭСС, при которой все особи с равной вероятностью могут вести себя как Ястребы, в данном случае-с вероятностью 7/12. На практике это должно означать, что каждый индивидуум вступает в каждое состязание, заранее приняв случайным образом решение, выступать ли ему в даном состязании в роли Ястреба или в роли Голубя; решение принято случайно, но с вероятностью 7/12 в пользу Ястреба. Очень важно, чтобы эти решения, несмотря на некоторую предпочтительность стратегии ястреба, были случайными в том смысле, что у противника нет возможности угадать, как его оппонент собирается вести себя в каждом конкретном состязании. Так, например, неразумно выступать в роли Ястреба семь раз подряд, а затем пять раз подряд в роли Голубя и так далее. Если какой-нибудь индивидуум примет такую простую последовательность, то его противники быстро разгадают его намерения и воспользуются этим. Чтобы победить противника, избравшего стратегию простой последовательности, достаточно разыгрывать Ястреба только в тех случаях, когда точно известно, что он будет выступать в роли Голубя.

Пример Ястреба и Голубя, конечно, прост до наивности. Это всего лишь «модель»; на самом деле в природе ничего такого не происходит, но модель помогает понять действительные события. Модели могут быть такими простыми, как эта, и тем не менее окажутся полезными для понимания какого-то факта или будут стимулировать появление новой идеи. Простые модели можно совершенствовать и постепенно усложнять. Если все идет хорошо, то по мере усложнения моделей их сходство с реальным миром возрастает. Один из путей дальнейшей разработки модели Ястреба и Голубя состоит в том, чтобы ввести в нее еще несколько стратегий. Ястреб и Голубь — не единственные возможности. Мэйнард Смит и Прайс ввели более сложную стратегию, получившую название «Отпорщик» (retaliator).

Отпорщик в начале каждого сражения действует как Голубь: он не предпринимает решительной яростной атаки, все усиливая натиск, как это свойственно Ястребу, а ограничивается условными угрожающими действиями. Но если противник нападает на него, то он платит тем же. Иными словами, если на Отпорщика нападает Ястреб, то он ведет себя как Ястреб, а при встрече с Голубем — как Голубь. Когда он встречается с другим Отпорщиком, он ведет себя как Голубь. Отпорщик -это условный стратег. Его поведение зависит от поведения противника.

Другой условный стратег получил название «Задира» (bully). Задира ходит вокруг, выступая в роли Ястреба, пока кто-нибудь не даст ему сдачи. Тогда он немедленно удирает. Есть еще один условный стратег: «Испытатель-отпорщик» (prober-retaliator). Он в принципе сходен с Отпорщиком, но иногда в порядке эксперимента предпринимает попытку наращивания конфликта. Если противник не оказывает сопротивления, то Отпорщик продолжает вести себя как Ястреб; но получив отпор, он переходит на традиционные угрозы, характерные для Голубя. Если же на него нападают, он реагирует как обычный Отпорщик.

Если все пять описанных мной стратегий «натравить» друг на друга в компьютерной модели, то оказывается, что лишь одна из них — стратегия Отпорщика — стабильна в эволюционном смысле [5.2]. Стратегия Испытателя-отпорщика почти стабильна, стратегия Голубя нестабильна, потому что популяцию, состоящую из Голубей, наводнили бы Ястребы и Задиры. Стратегия Ястреба нестабильна, потому что популяцию, состоящую из Ястребов, наводнили бы Голуби и Задиры. Стратегия Задиры нестабильна, потому что популяцию Задир наводнили бы Ястребы. Популяцию Отпорщиков не смогут наводнить приверженцы ни одной из других стратегий, так как ни одна другая стратегия не может быть более эффективной, чем сама стратегия Отпорщика. Однако Голубь действует столь же эффективно в популяции Отпорщиков. Это означает, что при прочих равных условиях число Голубей могло бы медленно возрастать. Но вот если численность Голубей достигает сколько-нибудь значительного уровня, Испытатели-отпорщики (и, между прочим, Ястребы и Задиры) начинают приобретать преимущество, поскольку они лучше справляются с Голубями, чем Отпорщики. Сама стратегия Испытателя-отпорщика, в отличие от стратегии Ястреба и Задиры, почти соответствует ЭСС в том смысле, что в популяции, состоящей из особей, использующих эту стратегию, только одна стратегия-стратегия Отпорщика — оказывается более эффективной и притом лишь незначительно. Можно ожидать поэтому преобладания популяций, которые состоят из смеси особей, использующих стратегии Отпорщиков и Испытателей-отпорщиков (возможно, даже с небольшими колебаниями в соотношении между ними), и небольшого числа Голубей, доля которых также колеблется. Следует снова подчеркнуть, что речь идет отнюдь не о полиморфизме, при котором каждый индивидуум всегда использует какую-то одну стратегию. Поведение каждого индивидуума может представлять собой сложную смесь стратегий Отпорщика, Испытателя-отпорщика и Голубя.

Это теоретическое заключение довольно близко к тому, что происходит на самом деле в популяциях большинства диких животных. Мы в некотором смысле объяснили «рыцарский» аспект агрессивности животных. Конечно, в каждом конкретном случае детали поведения зависят от точного числа «очков», которым оценивается победа, получение травмы, потеря времени и т. п. У морских слонов наградой за победу могут быть почти монопольные права на большой гарем. Поэтому выигранное сражение может оцениваться очень высоко. Неудивительно, что драки между этими животными бывают жестокими и вероятность получения серьезных травм также высока. Цену потерянного времени, вероятно, следует считать незначительной по сравнению с ценой травмы или выгоды, которую дает победа. Вместе с тем для мелких птиц, обитающих в холодном климате, наиважнейшее значение может иметь цена потери времени. Большая синица, вскармливающая птенцов, должна ловить в среднем по одному насекомому каждые 30 секунд. Ей дорога каждая секунда дневного времени. Даже относительно короткое время, затраченное впустую на стычку Ястреб/Ястреб, по-видимому, следует рассматривать как более серьезную потерю для такой птицы, чем риск получения травмы. К сожалению, наши знания пока слишком ограничены, для того чтобы давать реалистические оценки потерь и выигрышей при различных исходах подлинных событий, происходящих в природе [5.3]. Мы должны соблюдать осторожность и не делать выводов, которые были бы просто результатом наших собственных произвольных оценок. Общие выводы, имеющие существенное значение, состоят в том, что ЭСС способна эволюционировать, что она неравнозначна оптимуму, которого можно было бы достигнуть в результате группового сговора, и что здравый смысл может ввести в заблуждение.

Другая военная игра, рассмотренная Мэйнардом Смитом, это «война на истощение». Подобная война возможна у такого вида, который никогда не ввязывается в опасные сражения; это может быть вид, защищенный достаточно прочной броней, так что его представителям вряд ли грозят серьезные повреждения. Все конфликты между членами такого вида разрешаются путем чисто условных демонстраций, которые всегда заканчиваются бегством одного из противников. Для того чтобы победить, достаточно стоять на месте и свирепо глядеть на своего противника, пока он не повернется задом. Совершенно очевидно, что ни одно животное не может себе позволить бесконечно заниматься угрозами; у него есть множество других важных дел. Какую бы ценность ни представлял для него ресурс, из-за которого произошел конфликт, эта ценность небезгранична. На то, чтобы завладеть этим ресурсом, имеет смысл затратить лишь какое-то определенное количество времени, и, как на любом аукционе, каждый индивидуум устанавливает для себя предел, за который он не перейдет. На нашем аукционе, в котором участвуют лишь двое покупщиков, валютой служит время.

Допустим, что все такие индивидуумы заранее решили, сколько именно времени «стоит» некий определенный ресурс, например самка. В таком случае мутантный индивидуум, готовый затратить чуть больше времени, всегда окажется победителем. Следовательно, стратегия, ограничивающая длительность аукционных торгов, нестабильна. Даже если цена данного ресурса определена очень точно и все индивидуумы предлагают именно эту цену, стратегия остается нестабильной. Любые два индивидуума, предлагающие цену в соответствии с этой максимальной стратегией, прекратят торг точно в один и тот же момент и ни один из них не получит желанный ресурс! В таком случае каждому индивидууму было бы выгодно отступить с самого начала и вовсе не тратить времени ни на какие соревнования. Важное различие между войной на истощение и настоящим аукционом состоит в том, что при такой войне платят оба противника, но лишь один из них получает товар. Поэтому в популяции покупщиков, предлагающих максимальную цену, стратегия отказа от торгов с самого начала обеспечит успех и распространится в популяции. Вследствие этого индивидуумы, отказавшиеся продолжать игру не сразу, а спустя несколько секунд, начнут извлекать из этого некоторую выгоду. Такая стратегия будет вознаграждаться в случае применения ее против индивидуумов, прекращающих игру немедленно, которые теперь преобладают в популяции. Отбор будет, следовательно, благоприятствовать постепенному отодвиганию момента отказа, до тех пор, пока он снова не приблизится к максимуму, допускаемому настоящей потребительской ценой данного ресурса.

Еще раз, с помощью одних лишь рассуждений мы убедили себя представить картину неких колебаний в популяции. И снова математический анализ показывает, что эта картина неверна. Эволюционно стабильная стратегия, которую можно описать математически, существует, но в словесном выражении она сводится к тому, что каждый индивидуум готов продолжать соответствующие действия в течение непредсказуемого времени. Время это непредсказуемо в каждом отдельном случае, но в среднем оно отражает истинную цену ресурса. Допустим, например, что ресурс заслуживает продолжения демонстраций в течение пяти минут. При ЭСС каждый отдельный индивидуум может продолжать их больше пяти минут, меньше этого срока или даже ровно пять минут. Важно, что его противник лишен возможности узнать, сколь долго тот готов демонстрировать в данном конкретном случае.

Совершенно очевидно, что в войне на истощение жизненно важно, чтобы противники ничем не выдали своего намерения выйти из игры. Всякий, кто хотя бы малейшим подрагиванием усов выкажет, что он начинает подумывать о том, чтобы сдаться, мгновенно окажется в невыгодном положении. Если бы, скажем, подрагивание усов было надежным признаком того, что через минуту последует отступление, то можно было бы воспользоваться очень простой стратегией: «Заметив подрагивание усов вашего противника, подождите минутку, прежде чем сдаться, независимо от того, какими были ваши намерения прежде. Если же усы вашего противника еще неподвижны, а до того момента, когда вы все равно собирались сдаваться, осталась одна минута, сдавайтесь немедленно и не теряйте больше времени. Никогда сами не шевелите усами». Так естественный отбор быстро покарал бы за подрагивание усов и за любое аналогичное действие, которое могло бы выдать, как вы намереваетесь вести себя в будущем. В процессе эволюции выработалось бы бесстрастное выражение лица.

Почему же бесстрастное лицо, а не отъявленная ложь? Еще раз: потому что вранье нестабильно. Допустим, случилось так, что большинство индивидуумов приходило бы в ярость только тогда, когда они действительно собираются вести длительную войну на истощение. Ответная уловка совершенно очевидна: как только у животного шерсть встала дыбом, его противник тут же отступает. Но дальнейшая эволюция может привести к появлению обманщиков: индивидуумы, которые вовсе не расположены к длительной борьбе, при каждом удобном случае ощетиниваются и пожинают плоды легкой и быстрой победы. Так начинают распространяться гены вранья. Когда обманщики оказываются в большинстве, отбор начинает благоприятствовать индивидуумам, которых они «брали на пушку». Поэтому число обманщиков снова уменьшается. В войне на истощение обман пригоден в качестве эволюционно стабильной стратегии не более, чем правда. Эволюционно стабильна бесстрастность. Капитуляция, когда она, наконец, произойдет, будет внезапной и непредсказуемой.

До сих пор мы рассматривали только то, что Мэйнард Смит называет «симметричными» соревнованиями. Это означает, что мы допускаем полную идентичность соперников во всех отношениях, за исключением используемой ими стратегии борьбы. Иными словами, предполагается, что Ястребы и Голуби равны по силе, обладают одинаковым оружием и броней и что их выигрыш в случае победы одинаков. Такое допущение удобно для построения модели, но оно не очень реалистично. Далее Паркер (Parker) и Мэйнард Смит занялись асимметричными соревнованиями. Предположим, например, что индивидуумы различаются по размерам и по бойцовским качествам и каждый индивидуум способен оценить параметры противника по сравнению со своими собственными; оказывает ли это влияние на складывающуюся ЭСС? Безусловно оказывает.

Существует, очевидно, три главных вида симметрии. О первом мы только что говорили: индивидуумы могут различаться по своим размерам и бойцовским качествам. Второй состоит в том, что индивидуумы могут различаться по величине той выгоды, которую им принесет победа. Например, старый самец, которому в любом случае осталось недолго жить, получив рану, потеряет, вероятно, меньше, чем молодой, который в течение долгого времени еще способен к размножению.

Третий тип симметрии представляет собой странное следствие, вытекающее из теории о том, что чисто произвольная, казалось бы, совершенно не относящаяся к делу, асимметрия способна дать начало некой ЭСС, поскольку ее можно использовать для быстрого улаживания конфликтов. Такая асимметрия возникает, например, обычно в тех случаях, когда один из противников появляется на месте состязания раньше другого. Назовем первого «Резидентом», а второго «Захватчиком». Допустим, что в общем положение Резидента или Захватчика не дает никаких преимуществ. Как мы увидим, существуют практические причины, по которым эти допущения могут оказаться неверными, но не в этом дело. Главное в том, что, если даже из общих соображений нет оснований говорить о наличии у Резидентов преимущества над захватчиками, существует вероятность возникновения ЭСС, зависящей от асимметрии. Простая аналогия: быстрое и безболезненное разрешение споров между людьми с помощью монетки.

Эволюционно стабильной могла бы стать следующая условная стратегия: «Если ты Резидент — нападай; если ты Захватчик — отступай». Поскольку мы допустили, что рассматриваемая асимметрия произвольна, то противоположная стратегия: «Если Резидент — отступай, если Захватчик — нападай», также может быть стабильной. Какая из этих двух ЭСС будет принята данной популяцией, зависит от того, которая из них раньше завоюет большинство в популяции. Как только большая часть членов популяции примет одну из этих двух стратегий, те, кто ее отвергнут, будут наказаны. Следовательно, она по определению представляет собой ЭСС.

Предположим, например, что все особи придерживаются стратегии «Резидент побеждает, Захватчик отступает». Это означает, что половину своих битв они выигрывают, а половину проигрывают. Они никогда не бывают ранены и никогда не тратят время попусту, так как все споры немедленно разрешаются в соответствии с принятым соглашением. Допустим теперь, что появился новый мутантный мятежник. Предположим, что он применяет стратегию Ястреба в чистом виде, т. е. всегда нападает и никогда не отступает. Он будет побеждать в тех случаях, когда его противник ведет себя как Захватчик. Если же противником окажется Резидент, то он серьезно рискует получить травмы. В среднем его выигрыш будет ниже, чем у индивидуумов, придерживающихся произвольных правил ЭСС. Мятежнику, пытающемуся нарушить конвенцию «Если Резидент — беги, если Захватчик — нападай», приходится еще горше. Он не только чаще оказывается раненым, но и реже выходит победителем. Допустим, однако, что по какому-то случайному стечению обстоятельств индивидуумы, придерживающиеся этой противоположной стратегии, сумели стать большинством. В таком случае их стратегия превратилась бы в стабильную норму и каралось бы уже отступление от нее. Вполне возможно, что наблюдая за определенной популяцией на протяжении многих поколений, мы обнаружили бы ряд возникающих время от времени сдвигов от одного стабильного состояния к другому.

В реальной жизни, однако, действительно произвольные асимметрии вряд ли существуют. Например, Резиденты, возможно, в самом деле обладают практическим преимуществом над захватчиками. Им лучше известны местные условия. Захватчик, вероятно, раньше выбьется из сил, поскольку ему еще надо было добраться до поля битвы, тогда как Резидент находился там изначально. Есть также и более абстрактная причина, по которой из двух стабильных состояний — «Резидент побеждает, Захватчик отступает» — в природных условиях одно более вероятно. Причина эта в том, что противоположная стратегия — «Захватчик побеждает. Резидент отступает» — несет в себе тенденцию к саморазрушению; Мэйнард Смит назвал бы такую стратегию парадоксальной. В любой популяции, стойко придерживающейся этой парадоксальной ЭСС, индивидуумы всегда будут стремиться никогда не оказаться в роли Резидентов: они при каждой встрече будут стараться выступать в роли Захватчиков. Достигнуть этого они могут лишь с помощью безостановочного, и в остальном бессмысленного, перемещения! Не говоря уж о связанных с этим затратах времени и энергии, такое направление само по себе должно привести к исчезновению категории «Резидент». В популяции, стойко придерживающейся другого стабильного состояния — «Резидент побеждает, Захватчик отступает» — естественный отбор будет благоприятствовать выживанию индивидуумов, стремящихся быть Резидентами. Для каждого индивидуума это означает держаться за определенный участок земли, покидая его как можно реже и создавая видимость, что он его «защищает». Как хорошо известно, подобное поведение обычно наблюдается в природе и получило название «защита территории».

Наилучшую из всех известных мне демонстраций этой формы асимметрии в поведении предложил великий этолог Нико Тинберген, который провел эксперимент, отличающийся характерными для него изобретательностью и простотой [5.4]. В одном из его аквариумов жили два самца колюшки. Эти самцы построили себе по гнезду на противоположных концах аквариума и каждый из них «защищал» территорию вокруг собственного гнезда. Тинберген поместил каждого из самцов в отдельную стеклянную банку и, сблизив банки, наблюдал, как самцы пытаются вступить в драку через стекло. Тут-то и обнаружилось самое интересное: когда Тинберген приближал обе банки к той стенке аквариума, где находилось гнездо самца A, последний становился в позу нападения, а самец B пытался отступить; если же он приближал банки к территории самца B, то самцы менялись ролями. Таким образом, просто перенося банки от одного конца аквариума к другому, Тинберген мог диктовать, какому из самцов нападать, а какому отступать. Оба самца, очевидно, действовали в соответствии с простой условной стратегией «Если ты Резидент — нападай, если Захватчик — отступай».

Биологи нередко задают вопрос: в чем состоят биологические «преимущества» территориального поведения? Высказывались многочисленные предположения; о некоторых из них будет сказано позднее. Но теперь мы начинаем понимать, что сам вопрос, возможно, излишен. «Защита» территории — это, быть может, просто некая ЭСС, возникающая вследствие асимметрии во времени прибытия, которое обычно определяет характер взаимоотношений между двумя индивидуумами и данным участком земли.

Вероятно, самый важный вид непроизвольной асимметрии относится к общим размерам индивидуума и его бойцовским способностям. Крупные размеры — одно из качеств, необходимых для победы в сражениях, но оно необязательно всегда самое важное. Если из двух соперников всегда побеждает более крупный и если каждый из них точно знает, крупнее он по сравнению со своим соперником или мельче, то возможна лишь одна разумная стратегия: «Если твой соперник крупнее тебя — убегай; вступай в борьбу лишь с теми соперниками, которые мельче тебя». Положение несколько сложнее, если значение размеров менее определенно. Если крупные размеры дают лишь небольшое преимущество, указанная выше стратегия все еще стабильна. Если, однако, имеется серьезный риск получить увечье, возможна также другая, «парадоксальная», стратегия: «Вступай в борьбу с соперниками, которые крупнее тебя, и убегай от тех, которые мельче тебя!» Совершенно ясно, почему такая стратегия называется парадоксальной — она полностью противоречит здравому смыслу. Стабильной она может оказаться по следующей причине. В популяции, целиком состоящей из приверженцев парадоксальной стратегии, никогда не бывает пострадавших. Это объясняется тем, что в каждом состязании один из противников (более крупный) всегда убегает. Мутант средних размеров, придерживающийся «разумной» стратегии, т. е. выбирающий себе более мелких противников, в половине случаев оказывается втянутым в острую борьбу. Это объясняется тем, что встречая индивидуума, имеющего меньшие размеры, чем он сам, он нападает на него; в свою очередь этот мелкий индивидуум яростно дает сдачи, потому что он избрал парадоксальную стратегию; хотя «разумный» стратег имеет больше шансов победить, чем «парадоксальный», он все же довольно сильно рискует оказаться побежденным или получить серьезные повреждения. Поскольку большинство членов популяции придерживается парадоксальной стратегии, «разумный» стратег имеет больше шансов оказаться пострадавшим, чем любой отдельный «парадоксальный» стратег.

Несмотря на то, что парадоксальная стратегия может быть стабильной, она, вероятно, представляет только академический интерес. Средний выигрыш ее приверженцев будет выше лишь в том случае, если их число значительно превосходит число «разумных» стратегов. Трудно представить себе, как она могла бы вообще возникнуть. Даже если бы она и возникла, то соотношению в популяции «разумных» и «парадоксальных» индивидуумов достаточно было бы чуть сдвинуться в «разумную» сторону, чтобы достичь «зоны притяжения» другой ЭСС — разумной стратегии. Зона притяжения — это тот набор соотношений в популяции, при котором (в данном случае) разумная стратегия дает преимущество: как только популяция достигнет этой зоны, она неизбежно будет затягиваться к разумной стабильной точке. Было бы очень здорово обнаружить пример парадоксальной ЭСС в природе, но я сомневаюсь, что на это есть какая-то реальная надежда. [Я поторопился. После того как были написаны эти строки, проф. Мэйнард Смит обратил мое внимание на следующее описание поведения мексиканского паука Oecobius civitas, данное Дж. Берджесом (J. W. Burgess): «Если паука потревожили и выгнали из его убежища, он мчится по скале и, если не может найти свободную щель, чтобы спрятаться, ищет приюта в норке другого паука того же вида. Если другой паук при этом находится в своем логовище, то вместо того чтобы напасть на пришельца, он выбегает наружу и в свою очередь начинает искать себе новое убежище. Таким образом, достаточно потревожить одного паука, чтобы вызвать процесс последовательного перемещения из паутины в паутину, который может продолжаться в течение нескольких секунд, часто вызывая переселение большинства пауков данного сообщества из собственного убежища в чужие». Это соответствует парадоксальной стратегии, описанной на с. 81.] [5.5].

А не может ли статься, что индивидуумы способны сохранять некоторые воспоминания об исходе прошлых боев? Это зависит от того, какой памятью они обладают: специфической или общей. Сверчки сохраняют в памяти общие представления о событиях, происходивших в прошлых стычках. Сверчок, который недавно вышел победителем из многих боев, приобретает черты Ястреба. Сверчок, который недавно многократно проигрывал, напротив, больше склонен к стратегии Голубя. Это очень четко показал Р. Александер (R. D. Alexander). С помощью моделей сверчков он одерживал победы над настоящими сверчками. После таких испытаний настоящие сверчки чаще проигрывали битвы с другими настоящими сверчками. Можно рассматривать каждого сверчка как индивидуум, непрерывно пересматривающий собственную оценку своих бойцовских качеств относительно аналогичных качеств среднего члена данной популяции. Если группу таких животных, как сверчки, действующих с учетом воспоминаний о прошлых битвах, содержать в течение некоторого времени вместе, не допуская к ним посторонних индивидуумов, то можно ожидать, что в ней возникнет своего рода иерархическая структура [5.6]. Наблюдая за такой группой, можно определить место, занимаемое каждым ее членом в этой структуре. Индивидуумы более низкого ранга обычно отступают перед индивидуумами более высокого ранга. Нет нужды предполагать, что индивидуумы узнают друг друга. На самом деле происходит всего лишь следующее: вероятность победы индивидуумов, привыкших побеждать, еще больше возрастает, тогда как индивидуумы, привыкшие к поражениям, будут проигрывать все чаще. Даже если вначале все индивидуумы выигрывают и проигрывают по закону случая, среди них все равно устанавливается иерархическая структура. Кстати сказать, это приводит к тому, что число серьезных драк постепенно идет на убыль.

Я должен использовать выражение «своего рода иерархическая структура», потому что многие считают необходимым ограничить применение термина «иерархическая структура» теми случаями, которые связаны с узнаванием конкретных индивидуумов. В таких случаях память о прошлых сражениях носит специфический, а не общий характер. Сверчки не способны воспринимать друг друга как конкретных индивидуумов, но куры и обезьяны способны на это. Предположим, что я — обезьяна. Тогда именно та обезьяна, которая побила меня когда-то в прошлом, вероятно, побьет меня и в будущем. Наилучшая стратегия для индивидуума состоит в том, чтобы вести себя по отношению к другому индивидууму, победившему его в прошлом, в соответствии со стратегией Голубя. Если нескольких кур, которые прежде никогда не встречались друг с другом, собрать вместе, то между ними обычно возникают драки. Спустя некоторое время эти драки затихают, однако по совсем другой причине, чем драки сверчков. У кур это происходит потому, что каждая из них «узнаёт свое место» по отношению ко всем остальным. Между прочим, от этого выигрывает группа в целом. Об этом свидетельствует то обстоятельство, что в сложившихся группах кур, в которых отчаянные драки редки, яйценоскость выше, чем в группах, состав которых все время изменяют и в которых драки поэтому возникают чаще. Биологи часто говорят о биологическом преимуществе или «функции» установления иерархической структуры как способе снижения явной агрессивности в группе. Такая постановка вопроса, однако, неверна. Иерархической структуре, как таковой, нельзя приписывать какую-либо функцию в эволюционном смысле, поскольку это свойство группы, а не индивидуума. Можно говорить, что типы индивидуального поведения, проявляющиеся в форме иерархической структуры, если рассматривать их на групповом уровне, обладают некими функциями. Лучше было бы, однако, вовсе отказаться от слова «функция» и представлять ситуацию в плане эволюционно стабильных стратегий в асимметричных состязаниях при наличии способности к узнаванию конкретных индивидуумов и памяти.

Мы рассматривали состязания между членами одного и того же вида. А как обстоит дело с состязаниями между представителями разных видов? Как уже говорилось выше, члены разных видов не конкурируют между собой столь непосредственным образом, как члены одного и того же вида. Поэтому следует ожидать, что между ними реже возникают конфликты из-за ресурсов. Наши ожидания подтверждаются: например, дрозды защищают свои территории от вторжения других дроздов, но не от больших синиц. Если составить карту территорий, занимаемых отдельными дроздами в данном лесу, и наложить на нее карту территорий отдельных больших синиц, то можно убедиться, что территории этих двух видов перекрываются совершенно беспорядочным образом. Они живут как бы на разных планетах.

Однако острые столкновения интересов представителей разных видов могут возникать по различным другим направлениям. Например, льву хочется съестъ тело антилопы, но у антилопы имеются совершенно другие планы относительно своего тела. Такую ситуацию обычно не считают конкуренцией за некий ресурс, но с точки зрения логики с этим трудно согласиться. В роли ресурса в данном случае выступает мясо. Гены льва «хотят» заполучить это мясо в качестве пищи для своей машины выживания. А гены антилопы хотят сохранить мясо в качестве функционирующих мышц и органов для собственной машины выживания. Эти два способа использования данного мяса несовместимы, что приводит к конфликту интересов.

Другие представители вида, к которому относится данный индивидуум, также состоят из мяса. Почему каннибализм относительно редок? Как отмечалось в гл. 1, взрослые особи обыкновенной чайки иногда поедают птенцов своего вида. Тем не менее никто никогда не видел, чтобы взрослые хищники активно преследовали других взрослых животных собственного вида с тем, чтобы их съесть. Но почему? Мы так привыкли размышлять об эволюции с точки зрения «блага для вида», что часто забываем задавать такие совершенно разумные вопросы, как, например: «Почему львы не охотятся на других львов?» Есть и другой неплохой вопрос подобного типа, который редко задается: «Почему антилопы убегают от львов, вместо того, чтобы дать им сдачи?»

Львы не охотятся на львов, потому что для них это не было бы эволюционно стабильной стратегией. Каннибальская стратегия оказалась бы нестабильной по той же самой причине, по какой нестабильна стратегия ястреба в примере, приводившемся выше, Слишком велика опасность ответного удара. В конфликтах между представителями разных видов это менее вероятно; поэтому-то столь многие животные-жертвы убегают, вместо того, чтобы дать сдачи. Первоначально это, вероятно, проистекает из того, что взаимодействию между двумя животными, относящимися к разным видам, свойственна некая асимметрия — большая, чем асимметрия между членами одного вида. Во всех случаях, когда между противниками существует сильная асимметрия, эволюционно стабильными стратегиями, вероятно, будут условные стратегии, зависящие от данной асимметрии. Возникновение стратегий, аналогичных стратегии «Если ты мельче — убегай, если крупнее — нападай», весьма вероятно в стычках между представителями разных видов, потому что между ними имеется так много асимметрий. Львы и антилопы достигли своего рода стабильности путем эволюционной дивергенции, которая усиливала изначальную асимметрию в состязаниях во все возрастающей степени. Они достигли высокого мастерства в искусствах охоты и бегства соответственно. Мутантная антилопа, которая избрала бы против львов стратегию «стой и борись», достигла бы меньших успехов, чем ее соперницы-антилопы, исчезающие за горизонтом.

Я предчувствую, что, возможно, со временем мы, оглядываясь назад, будем рассматривать концепцию ЭСС как одно из важнейших достижений эволюционной теории после Дарвина [5.7]. Она применима во всех случаях, когда речь идет о столкновении интересов, т. е. практически повсеместно. Те, кто занимается изучением поведения животных, приобрели привычку говорить о так называемой «социальной организации». Слишком часто социальная организация какого-либо вида рассматривается как совершенно самостоятельная реальность с собственным биологическим «преимуществом». Примером, который я уже приводил, служит «иерархическая структура». Я уверен, что за многими из высказываний биологов о социальной организации можно разглядеть неявные допущения, типичные для сторонников группового отбора. Концепция ЭСС Мэйнарда Смита дает нам возможность впервые ясно увидеть, как совокупность независимых эгоистичных единиц может приобрести сходство с единым организованным целым. Я полагаю, что это окажется верным не только в отношении социальной организации в пределах вида, но и в отношении «экосистем» и «сообществ», состоящих из многих видов. Я думаю, что со временем концепция ЭСС вызовет революцию в экологии.

Эта концепция приложима также к идее, высказанной в гл. 3, где проводилась аналогия между генами данного тела и командой гребцов в лодке — тем и другим необходимо сильно развитое чувство товарищества. Отбор сохраняет не просто «хорошие» гены, а те гены, которые хорошо функционируют на фоне других генов данного генофонда. Хороший ген должен быть совместим с другими генами, с которыми ему предстоит существовать в длинном ряду последовательных тел, и быть им комплементарным. Ген, определяющий способность зубов перемалывать растительную пищу, хорош в генофонде растительноядного животного, но непригоден в генофонде плотоядного.

Можно представить себе, что совместимое сочетание генов отбирается вместе, как некая единица. По-видимому, именно таким образом возникла мимикрия у бабочек, описанная в гл. 3. Но сила концепции ЭСС заключается в том, что она дает нам теперь возможность понять, как отбор мог достигнуть таких же результатов на уровне независимого гена. Эти гены необязательно должны быть сцеплены в одной хромосоме.

Аналогия с гребцами на самом деле не может объяснить эту мысль. Попытаемся подойти к ней как можно ближе. Допустим, что для достижения командой действительного успеха гребцы должны координировать свои действия с помощью слов. Допустим далее, что среди гребцов, из которых предстоит набрать команду, одни говорят только по-английски, а другие — только по-немецки. «Англичане» и «немцы» по своим спортивным качествам примерно равны. Однако ввиду того, что обмен информацией между гребцами играет важную роль, смешанная команда выигрывает меньше гонок, чем чисто английская или чисто немецкая.

Капитан не понимает этого. Он просто непрерывно перетасовывает гребцов, давая высокие оценки гребцам из лодок, выигрывающих гонки, и снижая оценки гребцам из проигравших лодок. Если при этом окажется, что среди гребцов, из числа которых он набирает себе команду, преобладают англичане, то из этого следует, что любой немец, попавший в его лодку, с большой вероятностью станет причиной поражения, потому что общение между гребцами будет нарушено. И наоборот, если в «фонде» гребцов преобладают немцы, то любая лодка, в которую попадает один англичанин, скорее всего проиграет соревнования. Очевидно, что наибольшими шансами на выигрыш обладают команды, состоящие либо из одних англичан, либо из одних немцев, но не смешанные команды. На первый взгляд создается впечатление, что капитан отбирает себе группу гребцов, говорящих на одном языке, как некую единицу. Это, однако, не так. Он отбирает отдельных гребцов, которые, по-видимому, способны выигрывать гонки. Между тем способность отдельного индивидуума выигрывать гонки зависит от того, какие другие индивидуумы имеются среди кандидатов, из которых набирается команда. Представители меньшинства автоматически попадают в категорию нежелательных не потому, что они плохие гребцы, а потому, что они относятся к меньшинству. Аналогичным образом тот факт, что критерием для отбора генов служит взаимная совместимость, вовсе не озирает, что мы непременно должны воспринимать группы генов так, будто они отбирались в виде неких единиц, т. е. как это было в случае бабочек. Отбор на таком низком уровне, как отдельный ген, может создавать впечатление отбора, происходящего на каком-то более высоком уровне.

В данном примере отбор благоприятствует простому конформизму. Возможна и более интересная ситуация: гены сохраняются отбором, потому что они дополняют друг друга. Возвращаясь к нашей аналогии, допустим, что идеально подобранная команда состоит из четырех правшей и четырех левшей. Допустим также, что капитан, не подозревающий об этом обстоятельстве, отбирает гребцов исключительно по «очкам». Если при этом в фонде кандидатов доминируют правши, то любой отдельный левша будет обладать преимуществом: он будет способствовать победе каждой лодки, в которую он попадет, и поэтому будет казаться хорошим гребцом. И наоборот, в фонде, в котором преобладают левши, преимуществом будет обладать правша. Это сходно с преимуществом ястреба в популяции голубей и голубя — в популяции ястребов. Разница в том, что в первом случае речь шла о взаимодействиях между отдельными телами — эгоистичными машинами, тогда как здесь мы говорим, по аналогии, о взаимодействиях между генами, находящимися в телах.

Отбор «хороших» гребцов, производимый капитаном вслепую, даст в итоге идеальную команду, состоящую из четырех левшей и четырех правшей. Создается впечатление, что он выбрал их всех сразу как целостную сбалансированную единицу. Но, как мне кажется, проще считать, что он отбирал их на более низком уровне — на уровне независимых кандидатов. Эволюционно стабильное состояние («стратегия» в данном контексте вводит в заблуждение) — четыре правши и четыре левши — возникает просто как следствие отбора на более низком уровне, производимого на основе очевидного преимущества.

Генофонд — это та среда, в которой ген находится долго. «Хорошие» гены отбираются вслепую как гены, выжившие в данном генофонде. Это не теория, это даже не факт, обнаруженный в результате наблюдения; такое утверждение -попросту тавтология. Интересно другое: что делает ген хорошим? В качестве первого приближения я высказал мысль, что ген попадает в категорию хороших, если он способен создавать эффективные машины выживания-тела. Эту идею следует несколько усовершенствовать. Генофонд становится эволюционно стабильным множеством генов, определяемым как генофонд, если в, него не может включиться никакой новый ген. Большая часть новых генов, возникающих в результате мутирования, перестановки или иммиграции, быстро устраняется естественным отбором: восстанавливается эволюционно стабильное множество. Время от времени новому гену удается проникнуть в такое множество: ему удается распространиться в генофонде. Существует некий переходный период нестабильности, завершающийся появлением нового эволюционно стабильного множества, — происходит маленькое эволюционное событие. По аналогии со стратегиями агрессии популяция может иметь более одной альтернативной стабильной точки и может перескакивать с одной из них на другую. Прогрессивная эволюция — это, возможно, не столько упорное карабканье вверх, сколько ряд дискретных шагов от одного стабильного плато к другому [5.8]. Может показаться, что популяция в целом ведет себя как отдельная саморегулирующаяся единица. Но эта иллюзия возникает в результате того, что отбор происходит на уровне единичного гена. Гены отбираются по своим «заслугам». Но заслуги данного гена оцениваются по его поведению на фоне эволюционно стабильного множества, каковым является нынешний генофонд.

Сосредоточив внимание на агрессивных взаимодействиях между целыми индивидуумами, Мэйнард Смит смог очень ясно изложить ситуацию. Нетрудно представить себе стабильное соотношение тел ястребов и голубей, потому что тела — крупные объекты, которые мы можем видеть. Однако такие взаимодействия между генами, локализованными в разных телах, — это лишь вершина айсберга. Огромное большинство существенных взаимодействий между генами эволюционно стабильного множества — генофонда — продолжается внутри отдельных тел. Эти взаимодействия трудно наблюдать, потому что они происходят в клетках, и в особенности в клетках развивающихся зародышей. Хорошо интегрированные тела существуют благодаря тому, что они являются продуктом эволюционно стабильного множества эгоистичных генов.

Но я должен вернуться на уровень взаимодействий между целостными животными, что составляет главный предмет, обсуждаемый в данной книге. Для понимания агрессии было удобно рассматривать отдельных животных как независимые эгоистичные машины. Эта модель распадается, если рассматриваемые индивидуумы связаны близким родством (родные или двоюродные братья и сестры, родители и дети). Дело в том, что у родственников значительную долю генотипа составляют одинаковые гены. Поэтому каждому эгоистичному гену приходится учитывать интересы нескольких разных тел. Объяснение этому будет дано в следующей главе.


Примечания:



Глава 5. Агрессия: стабильность и эгоистичная машина

id="note5.1">

[5.1]

...эволюционно стабильная стратегия…

Сформулируем теперь главную идею ЭСС следующим, более экономичным способом. ЭСС это стратегия, эффективная против копий самой себя. В основе такого определения лежат следующие соображения. Успешная стратегия — это стратегия, доминирующая в данной популяции. Поэтому она будет сталкиваться с собственными копиями и сможет оставаться эффективной лишь в том случае, если будет успешно справляться с этими копиями. Это определение математически не столь точно, как определение Мэйнарда Смита, и оно не может заменить последнее, поскольку в сущности является неполным. Однако оно обладает тем достоинством, что неявно заключает в себе основную идею ЭСС.

В настоящее время концепция ЭСС получила среди биологов более широкое распространение, чем тогда, когда была написана эта глава. Мэйнард Смит сам подвел итоги всего, что было сделано до 1982 г., в своей книге «Эволюция и теория игр». Несколько позже написал обзор Джеффри Паркер (Geoffrey Parker), еще один из тех, кто внес большой вклад в эту область. Теория ЭСС использована в «Эволюции кооперации» Роберта Аксельрода (Robert Axelrod), но я не стану обсуждать ее здесь, так как одна из двух моих новых глав, «Добрые парни финишируют первыми», в значительной своей части посвящена книге Аксельрода. Сам я после выхода в свет первого издания этой книги опубликовал на тему теории ЭСС статью «Хорошая стратегия или эволюционно стабильная стратегия», а также, вместе с соавторами, статьи о сфексах, рассматриваемых ниже.

id="note5.2">

[5.2]

...стратегия… Отпорщика стабильна в эволюционном смысле.

Это утверждение, к сожалению, оказалось неверным. В оригинальной статье Мэйнарда Смита и Прайса была допущена ошибка, а я повторил ее в этой главе и даже усугубил, высказав довольно глупое мнение, что стратегия «Испытатель-Отпорщик» — это «почти» эволюционно стабильная стратегия (если некая стратегия «почти» ЭСС, то значит, это не ЭСС и будет побеждена). На первый взгляд кажется, что стратегия Отпорщик похожа на ЭСС, потому что в популяции Отпорщиков ни одна другая стратегия не может быть более эффективной. Но Голубь в такой популяции оказывается столь же эффективным, так как его поведение в ней неотличимо от поведения Отпорщика. Поэтому Голубь может постепенно втягиваться в популяцию. Важно понять, что же происходит в дальнейшем. Дж. Хейл (J. S. Hale) и Л. Ивз (L. J. Eaves) создали динамическую компьютерную модель, которая воспроизводит эволюцию популяции животных на протяжении многих поколений. Они показали, что подлинная ЭСС в этой игре возможна при стабильной смеси Ястребов и Задир. Это не единственная ошибка в ранних работах по ЭСС, обнаруженная при такого рода динамическом подходе. Другим хорошим примером служит моя собственная ошибка, рассматриваемая в примечаниях к гл. 9.

id="note5.3">

[5.3]

К сожалению, наши знания пока слишком ограниченны для того, чтобы давать реалистические оценки потерь и выигрышей при различных исходах подлинных событий, происходящих в природе.

Мы теперь располагаем некоторыми надежными измерениями потерь и выигрышей в природе, которые проводились полевыми методами; эти данные были введены в определенные модели ЭСС. К числу лучших примеров относится один из видов роющих ос — сфексов, обитающих в Северной Америке. Это вовсе не те хорошо знакомые всем общественные осы, облепляющие наши банки с вареньем, которые представляют собой рабочих особей (самок) и заняты добыванием корма для своей колонии. У сфексов каждая самка предоставлена самой себе, и вся ее жизнь посвящена тому, чтобы обеспечить кров и пищу последовательным вереницам личинок. В типичном случае самка начинает с того, что пробуравливает в земле длинную норку, в конце которой имеется обширная камера. Затем она начинает охоту за добычей (это могут быть различные прямокрылые, например кузнечики, или другие насекомые и их личинки). Найдя жертву, оса парализует ее уколом жала и утаскивает в норку. Набрав четыре или пять насекомых, она откладывает на них яйцо и запечатывает норку. Из яйца вылупляется личинка, питающаяся заготовленными для нее насекомыми. Заметим между прочим, что оса парализует, т. е. обездвиживает, а не убивает своих жертв, с тем чтобы они не разлагались, а оставались живыми и личинки получали бы свежую пищу. Именно этот мрачный обычай, свойственный также другим перепончатокрылым, ихневмонидам, побудил Дарвина написать: «Я не могу убедить себя, что милосердный и всемогущий Господь мог намеренно создать ихневмонид специально для того, чтобы они кормились в телах живых гусениц…» Дарвин мог бы привести в качестве примера и известного французского повара, который варил раков живьем, чтобы они были вкуснее. Возвращаясь к жизни самки сфекса, следует сказать, что она ведет одиночный образ жизни, если не считать других самок, которые трудятся поблизости, а иногда даже занимают чужие норки, вместо того чтобы вырыть собственную.

Д-р Джейн Брокман (Jane Brockmann) — своего рода осиный эквивалент Джейн Гудол. Она приехала из Америки в Оксфорд поработать со мной, привезя с собой объемистые записи о почти каждом событии в жизни каждой самки в двух популяциях ос, в которых всех самок можно было идентифицировать. Ее данные были столь полными, что позволяли составить бюджет времени индивидуальных ос. Время — это предмет потребления, который следует расходовать осмотрительно: чем больше времени расходуется в одной области жизни, тем меньше остается на другие. Присоединившийся к нам Ален Грейфен (Alan Grafen) учил нас правильно оценивать стоимость затрат времени и репродуктивных выигрышей. Мы получили данные о том, что в игре между самками ос в одной популяции из Нью-Хэмпшира используется настоящая смешанная ЭСС, хотя для другой популяции из Мичигана таких данных получить не удалось. Коротко, нью-хемпширские осы либо роют собственные норки, либо занимают гнездо, устроенное другой осой. Согласно нашей интерпретации, занимая чужое гнездо, осы могут выгадать, так как некоторые норки бывают брошены теми, кто их вырыл, и их можно использовать. Проникновение в занятое гнездо не окупается, но у входящей в чужое гнездо осы нет способа, позволяющего определять, занято данное гнездо или свободно. Она рискует провести несколько дней, не подозревая о второй хозяйке, пока однажды, вернувшись домой, не обнаружит, что норка запечатана: все ее усилия пропали даром, вторая хозяйка отложила свое яйцо и пожинает плоды всех трудов. Если в данной популяции делается слишком много попыток занять чужое гнездо, имеющихся норок становится мало, шансы на то, что у гнезда окажется две хозяйки, возрастают, и поэтому рыть собственную норку становится выгодно. И наоборот, если многие осы роют норки, их становится много и это благоприятствует захвату чужих нор. Существует некоторая критическая для данной популяции частота проникновения в чужие норки, при которой рыть собственную норку и проникать в чужую одинаково выгодно. Если действительная частота ниже критической, то естественный отбор благоприятствует проникновению в чужую норку ввиду наличия многочисленных покинутых норок. Если же действительная частота выше критической, то таких норок мало, и естественный отбор благоприятствует рытью собственных норок. Таким образом в популяции поддерживается некое равновесие. Детальное количественное исследование приводит к выводу, что в данной популяции имеет место настоящая смешанная ЭСС, т. е. каждая отдельная оса с некоторой вероятностью может рыть себе норку или проникать в чужую, в отличие от популяции, состоящей из смеси особей, специализированных либо к одному, либо к другому поведению.

id="note5.4">

[5.4]

Наилучшую из всех известных мне демонстраций этой формы асимметрии в поведении…

Еще более яркую, чем Тинберген, демонстрацию принципа «резидент всегда побеждает» дает Н. Дейвис (N. B. Davies), изучавший бабочек Pararge aegeria. Работа Тинбергена проводилась до создания теории ЭСС, и моя интерпретация ЭСС в первом издании этой книги была непредусмотрительна. Дейвис задумал свое исследование поведения бабочек с учетом теории ЭСС. Он обратил внимание на то, что у Уитхэм Вуд, близ Оксфорда, отдельные самцы бабочек защищали пятна солнечного света. Дело в том, что эти пятна привлекали к себе самок, тем самым превращая пятна в ценный ресурс — во что-то, за что имеет смысл бороться. Самцов было больше, чем освещенных солнцем участков, так что не завладевшие такими участками индивидуумы ожидали своего часа в тени, под пологом листвы. Отлавливая самцов и выпуская их затем одного за другим, Дейвис показал, что того из них, которого он выпускал на солнечный участок первым, оба самца считали «владельцем». Тот же самец, который попадал на участок вторым, считался «захватчиком». Захватчик абсолютно во всех случаях быстро признавал себя побежденным, предоставляя владельцу полное право распоряжаться участком. В заключительном, разящем наповал эксперименте Дейвис сумел обмануть обоих самцов, заставив их «думать», что один из них владелец участка, а другой — захватчик. Только в этих условиях между ними возникала действительно серьезная длительная борьба. Между прочим, во всех этих случаях, когда я для простоты говорил об одной паре бабочек, на самом деле Дейвис работал с выборкой, позволяющей получить статистически достоверные результаты.

id="note5.5">

[5.5]

Парадоксальная ЭСС.

Другой случай, который мог бы служить примером парадоксальной ЭСС, описан в письме некоего м-ра Джеймса Доусона (James Dawson), опубликованном в газете «Тайме». «В течение нескольких лет я замечал, что одна чайка, используя флагшток в качестве выгодной позиции, неизменно уступала его другой чайке, которая стремилась занять это место, причем соотношение размеров двух птиц не играло никакой роли».

Самым убедительным известным мне примером парадоксальной стратегии служит поведение домашних свиней в скиннеровской камере. Эта стратегия стабильна в таком же смысле, как любая ЭСС, но ее лучше называть МСС («морфологически стабильная стратегия»), так как она возникает в течение собственной жизни данного животного, а не на протяжении эволюционного времени. Скиннеровская камера представляет собой устройство, в котором животное научается добывать себе пищу, нажимая на рычаг, после чего пища автоматически подается на лоток. Экспериментальные психологи часто помещают голубей или крыс в небольшие скиннеровские камеры, где животные быстро научаются нажимать на изящные небольшие рычаги, чтобы получить вознаграждение в виде пищи. Этому удалось обучить также свиней, помещая их в оборудованные специальным образом скиннеровские камеры с отнюдь не изящным рычагом, который они должны нажимать рылом (много лет назад я смотрел научный кинофильм об этих экспериментах и до сих пор помню, как я помирал со смеху). Б. Болдуин (B. A. Baldwin) и Дж. Меесе (G. Meese) обучали свиней в свинарнике, оборудованном наподобие скиннеровской камеры, но имевшем еще одну особенность: рычаг находился на одном конце свинарника, а кормушка на другом. Поэтому свинье приходилось, нажав на рычаг, мчаться на другой конец свинарника, чтобы получить пищу, а затем снова бежать к рычагу и т. д. Все шло прекрасно, но затем Болдуин и Меесе поместили в хлев пару свиней. Это дало возможность одной свинье эксплуатировать другую. Свинья-«раб» носилась вперед и назад, нажимая на рычаг, а свинья-«хозяин» сидела около кормушки, пожирая пищу по мере ее поступления. В парах свиней устанавливаются такого рода прочные отношения «хозяин/раб»: один съедает почти все, а другой работает и бегает.

Вернемся к парадоксу. Ярлыки «хозяин» и «раб» оказались совершенно неадекватными истинному положению вещей. Во всех парах свиней, в которых устанавливались стабильные взаимоотношения, в роли «хозяина», или «эксплуататора», всегда выступала свинья, которая во всем остальном занимала подчиненное положение. А так называемым «рабом», выполнявшим всю работу, была свинья, которая обычно доминировала. Всякий, знакомый с поведением свиней, предсказал бы, что «хозяином», поедающим большую часть корма, будет доминантная свинья, а роль «раба», много работающего и почти не получающего пищи, достанется свинье, находящейся в подчинении.

Как могла произойти такая парадоксальная перестановка? Это нетрудно понять, если начать рассуждать в рамках концепции стабильных стратегий. Для этого достаточно перевести принцип ЭСС из масштабов эволюционного времени в масштабы времени, в котором протекает жизнь индивидуума, т. е. в котором складываются отношения между двумя свиньями. Стратегия «если ты занимаешь доминирующее положение, сиди все время возле еды; если подчиняешься — управляй рычагом» звучит разумно, но она не будет стабильной. Подчиняющаяся свинья, нажав на рычаг, должна была бы быстро бежать к кормушке, где она обнаружила бы доминантную свинью, которая уперлась передними ногами в кормушку, да так, что ее невозможно сдвинуть с места. Подчиняющаяся свинья быстро перестала бы нажимать на рычаг, поскольку это поведение никогда не вознаграждалось. Рассмотрим теперь противоположную стратегию: «если ты доминируешь — управляй рычагом; если подчиняешься — сиди у кормушки». Такая стратегия окажется стабильной, несмотря на то, что она приводит к парадоксальному результату, когда подчиняющаяся свинья получает большую часть корма. Необходимо лишь, чтобы доминантной свинье оставалось хоть сколько-нибудь корма, когда она мчится к кормушке с другой стороны хлева. Добежав, она без труда оттолкнет подчиняющуюся свинью от кормушки. До тех пор, пока доминирующей свинье достаются в награду хоть какие-то крохи, она будет продолжать приводить в действие рычаг, а тем самым непреднамеренно давать возможность подчиняющейся свинье обжираться. А подчиняющаяся свинья будет продолжать лениво сидеть у кормушки, так как это тоже вознаграждается. Таким образом, вся стратегия, при которой доминирующий индивидуум выступает в роли «раба», а подчиняющийся — в роли «хозяина», вознаграждается, а поэтому она стабильна.

id="note5.6">

[5.6]

...своего рода иерархическая структура [у сверчков]…

Тед Берк (Ted Burk), бывший в то время моим аспирантом, обнаружил дальнейшие свидетельства такой псевдоиерархической структуры у сверчков. Он также показал, что самец у них чаще начинает ухаживать за самками, если недавно вышел победителем в драке с другим самцом. Это следовало бы назвать «эффектом герцога Мальборо», основываясь на следующей записи в дневнике первой герцогини Мальборо: «Его светлость вернулся сегодня с войны и, не снимая сапог, дважды доставил мне удовольствие». Можно придумать и другое название, связав его со следующим сообщением об изменениях уровня мужского гормона тестостерона, опубликованным в журнале New Scientist: «Уровень тестостерона у теннисистов в течение суток, предшествовавших большому матчу, повышался. По окончании матча у победителей высокий уровень сохранялся, а у побежденных падал».

id="note5.7">

[5.7]

...концепцию ЭСС как одно из важнейших достижений эволюционной теории после Дарвина.

Это, пожалуй, слишком сильно сказано. Я, вероятно, чересчур быстро отреагировал на преобладавшее в те годы пренебрежительное отношение к идее ЭСС в биологической литературе, особенно в Америке. Так, например, этот термин ни разу не упоминается в объемистой «Социобиологии» Э. Уилсона (E. O. Wilson). Теперь им больше не пренебрегают, а поэтому я могу занять более критическую и менее снисходительную позицию. Вовсе не обязательно пользоваться терминологией ЭСС, при условии, что ваши рассуждения достаточно четкие. Но эта терминология сильно способствует ясности мышления, особенно в тех случаях — а практически таких случаев большинство, — когда подробные генетические данные отсутствуют. Иногда говорят, что в основе модели ЭСС лежит допущение о бесполом размножении, однако такое утверждение вводит в заблуждение, если воспринимать его как явное противопоставление бесполого размножения половому. На самом же деле модели ЭСС не утруждают себя рассмотрением деталей генетической системы. Вместо этого они несколько туманно допускают, что подобное рождает подобное. Для многих целей такое допущение вполне пригодно. В сущности его неопределенность может быть даже благотворной, поскольку помогает сосредоточить внимание на главном, не вдаваясь в такие детали, как генетическое доминирование, о которых в конкретных случаях обычно ничего неизвестно. Концепция ЭСС весьма полезна в своей негативной роли: она помогает нам избежать теоретических ошибок, в которые мы могли бы впасть в ее отсутствие.

id="note5.8">

[5.8]

Прогрессивная эволюция — это, возможно, не столько упорное карабканье вверх, сколько ряд дискретных шагов от одного стабильного плато к другому.

Этот абзац представляет собой краткое и беспристрастное изложение хорошо известной в настоящее время теории прерывистого равновесия. Мне стыдно признаться, что когда были написаны эти строки, я, подобно многим биологам Англии в то время, совершенно ничего не знал об этой теории, хотя она была опубликована тремя годами ранее. Позднее, например в «Слепом часовщике», я проявлял некоторое раздражение (возможно, чрезмерное) из-за того, что теорию прерывистого равновесия слишком переоценивали. Я сожалею, если это оскорбило чьи-то чувства. Может быть, этим лицам приятно будет узнать, что во всяком случае в 1967 г. мои намерения были самыми добрыми.

>

Глава 6. Генное братство

id="note6.1">

[6.1]

...я никогда не мог понять, почему этологи так пренебрегают этими работами.

Статьи Гамильтона, вышедшие в 1964 г., теперь уже не остаются без внимания. История пренебрежения этими статьями в прошлом и последующего их признания сама по себе представляет интересное количественное исследование — изучение конкретного примера включения «мима» в мимофонд. Я прослежу за развитием этого мима в примечаниях к гл. 11.

id="note6.2">

[6.2]

Допустим…, что мы рассматриваем гены, редко встречающиеся…

Допущение, что речь идет о гене, редко встречающемся в популяции в целом, было небольшой уловкой, облегчающей измерение коэффициента родства. Одно из главных достижений Гамильтона состояло в том, что его заключения не зависят от того, рассматриваем ли мы редкие или часто встречающиеся гены. Это оказалось тем аспектом теории, который люди воспринимают с трудом.

Проблема измерения коэффициента родства явилась камнем преткновения для многих из нас по следующей причине. Дело в том, что у любых двух представителей данного вида, независимо от того, принадлежат ли они к одной семье или нет, обычно более 90% всех генов одинаковые. Что же мы имеем в виду, когда говорим, что коэффициент родства между родными братьями составляет 1/2, а между двоюродными — 1/8? Только то, что у братьев одинакова 1/2 их генов помимо и сверх тех 90% (или сколько их там есть), которые в любом случае одинаковы у всех индивидуумов. Существует некий базисный коэффициент родства, общий для всех членов данного вида; в сущности, хотя и в меньшей степени, он распространяется и на другие виды. Следует ожидать, что альтруизм будет проявляться по отношению к индивидуумам, коэффициент родства с которыми выше базисного, каким бы он ни был.

В первом издании я обошел эту проблему, ограничив свои рассуждения редкими генами. Это допустимо, пока речь идет о них, но и только. Сам Гамильтон писал о генах, «идентичных по своему происхождению», но это также сопряжено с трудностями, как показал Алан Грейфен (Alan Grafen). Другие авторы даже не признавались в существовании какой-то проблемы, а просто говорили об абсолютных процентах общих генов, что несомненно является ошибкой. Такие небрежные рассуждения привели к серьезным недоразумениям. Например, один уважаемый антрополог в пылу ожесточенных нападок на «социобиологию», опубликованных в 1978 г., пытался утверждать, что если мы принимаем кин-отбор всерьез, то следовало бы ожидать, что все люди должны проявлять друг к другу альтруизм, так как число общих генов превышает у них 99%. Я кратко откликнулся на эту ошибку в моих «Двенадцати недопониманиях кин-отбора» (она идет в них под номером 5). Остальные 11 недоразумений также заслуживают разбора.

Алан Грейфен в своей статье «Геометрический взгляд на коэффициент родства», быть может, дал окончательное решение проблемы коэффициента родства. Я не буду пытаться излагать здесь эту статью.

В другой статье «Естественный отбор, кин-отбор и групповой отбор» Грейфен разъясняет еще одну часто встречающуюся и важную проблему, а именно — широко распространенное неверное использование гамильтоновской концепции «инклюзивной приспособленности». В ней рассмотрены также правильный и ошибочный способы подсчета потерь и преимуществ для генетических родственников.

id="note6.3">

[6.3]

...броненосцы… Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим.

Никаких дальнейших сведений о броненосцах не сообщалось, но стали известны некоторые новые эффектные данные о другой группе «клонируемых» животных — тлях. Уже давно известно, что тли размножаются как бесполым, так и половым путем. Когда вы видите на каком-нибудь растении скопление тлей, то есть шансы, что все они — члены одного клона идентичных самок, тогда как на соседнем растении могут находиться члены другого клона. Теоретически такие условия идеальны для эволюции альтруизма под действием кин-отбора. Подлинных примеров альтруизма тлей не было известно, однако, до тех пор, пока в 1977 г. японский специалист по тлям Сигеюки Аоки не обнаружил у одного японского вида тлей стерильных «солдат» — слишком поздно, чтобы это могло попасть в первое издание моей книги. Впоследствии Аоки обнаружил это явление у ряда различных видов, и он располагает надежными данными о том, что в процессе эволюции оно независимо возникало по крайней мере четыре раза в разных группах тлей.

Вкратце Аоки установил следующее. «Солдаты» у этих тлей — особая каста, отличающаяся от других по своей анатомии, подобно кастам таких знаменитых общественных насекомых, как муравьи. Это личинки, которые не достигают половой зрелости и поэтому стерильны. Как внешним видом, так и поведением они отличаются от других развивающихся одновременно с ними личинок, которым, однако, они генетически идентичны. Солдаты, как правило, крупнее; у них аномально большие передние ноги, что придает им сходство со скорпионами, а от головы отходят острые рога, направленные вперед. Они пользуются этим оружием, чтобы драться с хищниками и убивать их. В этих стычках они нередко гибнут, но если даже дело не доходит до гибели, мы вправе считать их генетически альтруистичными, потому что они стерильны.

Что же здесь происходит в плане эгоистичных генов? Аоки не уточняет, чем определяется превращение конкретных индивидуумов в стерильных солдат или в нормальных половозрелых тлей, но мы вправе утверждать, что это, очевидно, обусловлено каким-то фактором среды, поскольку стерильные солдаты и нормальные тли, находящиеся на каждом данном растении, генетически идентичны. Однако, по всей вероятности, существуют гены, определяющие способность переключаться под действием среды на тот или другой путь развития. Почему естественный отбор благоприятствовал этим генам, несмотря на то, что некоторые из них попадают в тела стерильных солдат и поэтому не передаются последующим поколениям? Да потому, что благодаря солдатам копии этих самых генов могли сохраниться в телах репродуктивных особей. Разумная причина здесь та же самая, что и у всех общественных насекомых (см. гл. 10), с той разницей, что у таких общественных насекомых, как муравьи и термиты, гены стерильных «альтруистов» имеют лишь статистическую вероятность помочь своим копиям, содержащимся в нестерильных репродуктивных индивидуумах. Солдаты у тлей принадлежат к тому же клону, что и их репродуктивные сестры, которых они благодетельствуют. В некоторых отношениях тли, которых изучает Аоки, служат превосходной иллюстрацией могущества идей Гамильтона, предоставленной самой природой.

Следует ли в таком случае принять тлей в тот особый клуб общественных насекомых, куда по традиции допускались только муравьи, пчелы, осы и термиты? Консервативные энтомологи могли бы забаллотировать их на разных основаниях. У тлей нет, например, долго-живущих старых маток. Кроме того, поскольку тли образуют настоящие клоны, они не более «социальны», чем клетки вашего тела. Это как бы одно животное, кормящееся на данном растении. Просто его тело разделено на физически обособленных тлей, и некоторые из них специализированы к выполнению защитных функций, подобно лейкоцитам в теле человека. Далее, «настоящие» общественные насекомые сотрудничают друг с другом, несмотря на то, что они не являются частями одного и того же организма, тогда как тли Аоки сотрудничают, потому что они составляют единый «организм». Я не могу серьезно относиться к этому семантическому вопросу. Мне кажется, что до тех пор, пока вы понимаете, что происходит среди муравьев, тлей и клеток человека, вы вольны называть или не называть их общественными по собственному усмотрению. Что касается лично меня, то я по ряду причин предпочитаю называть тлей Аоки общественными организмами, а не частями одного организма. У единого организма имеются определенные критические свойства, которыми обладают отдельные тли, но которых нет у клона тлей. Этот вопрос я разобрал в «Расширенном фенотипе», в главе, названной «Вновь открывая организм», а также в новой главе настоящей книги, названной «Длинная рука гена».

id="note6.4">

[6.4]

Кин-отбор никак нельзя считать особым случаем группового отбора.

Неразбериха с разницей между групповым отбором и кин-отбором не исчезла. Может быть, она даже усилилась. Мои замечания сохраняют силу и они актуальны вдвойне, если не считать того, что из-за небрежности в выборе слов я сам допустил ошибку на с. 102 первого издания этой книги. Я там писал (это одно из немногих мест, которые я изменил в тексте данного издания): «Мы просто ожидаем, что троюродные братья и сестры получат 1/16 того альтруизма, который получили бы потомки или сибсы». Как указал С. Альтман (S. Altmann), совершенно очевидно, что это не так. Это неверно по причине, не имеющей никакого отношения к вопросу, который я пытался обсуждать в то время. Если у данного альтруистичного животного есть пирог, которым он собирается поделиться со своими родственниками, то вовсе не обязательно давать каждому родственнику по куску, определяя величину кусков в соответствии с коэффициентом родства. Это привело бы к абсурду, поскольку все члены данного вида, не говоря о других видах, — это по меньшей мере его отдаленные родственники, каждый из которых мог бы претендовать на тщательно отмеренную крошку! И напротив, если поблизости оказался близкий родственник, то нет причин вообще давать дальнему родственнику хоть сколько-то пирога. Ввиду других осложнений, подобно закону убывающего плодородия, следовало бы отдать весь пирог самому близкому из имеющихся родственников. Я, конечно, хотел сказать следующее: «Мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов», как это сформулировано теперь на с. 95.

id="note6.5">

[6.5]

Он преднамеренно исключает потомков: они не считаются родственниками!

Я выразил надежду, что Э. Уилсон изменит свое определение кин-отбора в будущих публикациях, с тем чтобы включить потомков в число «родственников». Я с удовольствием сообщаю, что в книге «О человеческой природе» обидные слова «кроме потомков» были в самом деле опущены — я отнюдь не ставлю это себе в заслугу! Уилсон добавляет: «Хотя по определению потомки входят в число родственников, термин кин-отбор обычно используется только в том случае, если под его действие подпадают по крайней мере некоторые другие родственники-братья, сестры или родители». Это, к сожалению меткое, замечание, касающееся обычного употребления данного термина биологами, просто отражает тот факт, что многие биологи все еще не понимают «нутром», в чем истинная суть кин-отбора. Они продолжают ошибочно считать его чем-то излишним и мало понятным, лежащим за пределами обычного «индивидуального отбора» и над ним. Это не так. Кин-отбор следует из базисных допущений неодарвинизма, как ночь следует за днем.

id="note6.6">

[6.6]

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления…

Ошибочное представление о том, что кин-отбор требует наличия у животных совершенно нереалистичных способностей к вычислениям, неуклонно реанимируется одним поколением ученых за другим. Причем не только молодыми учеными. Книга «Употребление биологии и злоупотребление ею» известного социального антрополога Маршала Салинза (Marshall Sahlins) могла бы скромно оставаться в тени, если бы ее не провозгласили «уничижительной атакой» на «социобиологию». В контексте рассуждений о том, может ли кин-отбор действовать среди людей, следующая выдержка из этой книги чуть ли не слишком хороша, чтобы быть правдой:

Мимоходом следует отметить, что гносеологические проблемы, создаваемые отсутствием лингвистической базы для вычисления r, коэффициентов родства, вырастают в серьезный недостаток теорий кин-отбора. Дело в том, что дробные числа встречаются в очень немногих языках земного шара — лишь в индо-европейских и древних цивилизациях Ближнего и Дальнего Востока, а у так называемых примитивных народов отсутствуют вовсе. Охотники и собиратели растений не умеют считать дальше трех. Я воздерживаюсь от комментариев по еще более сложному вопросу: каким образом животные могут представить себе, почему r (двоюродные сибсы собственной персоной) = 1/8.

Я уже не в первый раз цитирую эту весьма откровенную выдержку и могу также привести свой собственный довольно безжалостный ответ на неё из статьи «Двенадцать недоразумений по поводу кин-отбора»:

К сожалению для Салинза, он поддался искушению «воздержаться от комментариев» по поводу того, как животные могут «представить себе» r. Сама абсурдность мысли, которую он пытался высмеять, должна была насторожить его. Раковина улитки — превосходная логарифмическая спираль, но где же улитка хранит свои таблицы логарифмов? Как она умудряется читать их, если хрусталик ее глаза не имеет «лингвистической базы», чтобы вычислить m, коэффициент преломления? А как зеленые растения «постигают» формулу хлорофилла?

Все дело в том, что если вы начнете думать об анатомии, физиологии или почти любом другом аспекте биологии, а не только о поведении, в таком плане, как Салинз, то вы неизбежно придете к той же самой несуществующей проблеме. Для полного описания эмбрионального развития любой частички тела животного или растения необходимо привлечение сложных математических рассуждений, но это не значит, что само это животное или растение должно быть хорошим математиком! У очень высоких деревьев обычно бывают мощные «контрфорсы», выступающие, подобно крыльям, во все стороны от основания ствола. У каждого данного вида, чем выше дерево, тем относительно крупнее эти подпорки. Общеизвестно, что форма и величина подпорок близки к экономически оптимальным, необходимым для того, чтобы дерево стояло прямо, хотя инженеру понадобились бы довольно сложные математические выкладки, чтобы продемонстрировать это. Салинзу или кому-нибудь другому никогда не пришло бы в голову усомниться в справедливости теории контрфорсов лишь по той причине, что дерево не обладает математической подготовкой, необходимой для проведения соответствующих вычислений. Почему же понадобилось поднимать эту проблему в связи с кин-отбором? Это не может быть вызвано тем, что в данном случае речь идет о поведении, а не об анатомии, потому что существует множество других примеров поведения (я имею в виду поведения, не создаваемого кин-отбором), которые Салинз с радостью признает, не выдвигая свое «гносеологическое» возражение; подумайте, например, о предложенном мной самим примере (с. 97) сложных вычислений, которые в известном смысле каждый из нас должен производить, когда он ловит мяч. Невольно призадумаешься: а не существуют ли социологи, которые целиком согласны с теорией естественного отбора вообще, но которые по совершенно посторонним причинам, коренящимся, возможно, в истории предмета их изучения, отчаянно стремятся найти любой недостаток — какой угодно — именно в теории кин-отбора?

id="note6.7">

[6.7]

...нам надо подумать, каким образом животные могли бы распознавать своих близких родственников… Мы знаем, кто наши родственники, потому что нам сказали об этом…

После того как было опубликовано первое издание книги, вся проблема узнавания родственников приобрела еще большую популярность. Животные, подобно людям, по-видимому, обладают замечательными способностями отличать родственных особей от неродственных, часто по запаху. В недавно вышедшей книге «Узнавание родственных особей у животных» подводятся итоги тому, что нам теперь известно. Глава о человеке, написанная Памелой Уэллс (Pamela Wells), показывает, что приведенное выше утверждение («Мы знаем, кто наши родственники, потому что нам сказали об этом») следует дополнить: имеются по крайней мере косвенные данные, указывающие на то, что мы способны использовать разного рода несловесные указания, в том числе запах пота наших родственников. Вся эта проблема, по-моему, вмещается в цитате, с которой П. Уэллс начинает свою главу:

«Всех благонадежных товарищей можно распознать по их альтруистичному благоуханию.»

(Э. Каммингз)

Родственникам может понадобиться узнавать друг друга не только по альтруистическим причинам. Они могут также пожелать подвести баланс между аутбридингом и инбридингом, как мы увидим в следующем примечании.

id="note6.8">

[6.8]

...с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.)

Летальным называют ген, убивающий своего носителя. Рецессивный леталь, подобно любому другому рецессивному гену, оказывает свое действие только в том случае, если он присутствует в двойной дозе. Рецессивные гены сохраняются в генофонде лишь благодаря тому, что большинство индивидуумов, у которых они имеются, содержат их в единичной дозе и поэтому никогда не испытывают их вредного воздействия. Каждый данный летальный ген встречается редко, потому что в тех случаях, когда его частота повышается, он начинает встречаться в паре с собственными копиями и убивает своих носителей. Тем не менее существует, вероятно, множество разного рода летальных генов, и не исключено, что все мы переполнены ими. Существующие оценки числа различных леталей, затаившихся в генофонде человека, варьируют. В некоторых книгах указывается, что на каждого человека приходится в среднем по два летальных гена. При браке случайного мужчины со случайной женщиной шансов на то, что у них окажутся одни и те же летали, пренебрежимо малы, и их дети не пострадают. Но при браке родных брата и сестры или отца со своей дочерью картина зловещим образом изменяется. Какими бы редкими ни были мои рецессивные летали и рецессивные летали моей сестры в популяции в целом, вероятность того, что мы с ней несем одни и те же летали, достаточно велика, чтобы вызывать беспокойство. Если произвести расчеты, то оказывается, что в случае моего брака с родной сестрой на каждый имеющийся у меня рецессивный ген один из восьми наших потомков либо родится мертвым, либо умрет в молодом возрасте. Между прочим, с генетической точки зрения смерть в юношеском возрасте даже еще более «летальна», чем мертворождение: мертворожденный ребенок не требует таких больших затрат времени и энергии от своих родителей. Но как бы мы ни относились ко всему этому, браки между близкими родственниками не просто вредны. Они потенциально катастрофичны. Отбор на активное избегание кровосмешения мог быть таким же сильным, как любое селективное давление, которое измеряли в природе.

Антропологи, возражающие против дарвиновских объяснений избегания кровосмешения, может быть, не подозревали, против какого сильного доказательства в пользу теории Дарвина они выступают. Их аргументы иногда бывают настолько слабыми, что напоминают об особом ходатайстве отчаявшейся защиты. Так, например, они обычно говорят: «Если бы дарвиновский отбор действительно вколотил в нас инстинктивное отвращение к кровосмешению, у нас не было бы нужды запрещать его. Запрет возник лишь потому, что люди испытывают тягу к кровосмешению. Таким образом, закон против кровосмешения не может нести „биологическую“ функцию, он имеет чисто „социальное“ значение». Это возражение напоминает следующее рассуждение: «Автомобилю, в сущности, не нужен противоугонный замок на системе зажигания, поскольку у него есть замки на дверцах. Поэтому замок на системе зажигания не может служить противоугонным устройством; он, вероятно, имеет какое-то чисто ритуальное значение». Кроме того, антропологи любят подчеркивать, что у различных цивилизаций существуют разного рода запреты и даже различные определения кровного родства. Они, по-видимому, считают, что это также подрывает стремление дарвинизма объяснить избегание кровосмешения. Можно было бы, однако, с тем же успехом говорить, что половое влечение не может быть адаптацией в дарвиновском понимании, потому что представители разных цивилизаций предпочитают совершать половой акт в разных позах. Мне представляется весьма вероятным, что избегание кровосмешения у человека, а также у животных, — результат сильного дарвиновского отбора.

Плохо вступать в брак не только с лицами, слишком близкими к вам генетически. Слишком отдаленные скрещивания также могут оказаться нежелательными вследствие генетической несовместимости. Где именно находится золотая середина, предсказать нелегко. Следует ли вступать в брак с двоюродным братом или сестрой? А с троюродными или четвероюродными? Патрик Бейтсон (Patrick Bateson) пытался выяснить для одного вида куропаток, в какой части этого диапазона лежат их предпочтения в отношении брачных партнеров. В экспериментальной установке под названием «Амстердамский аппарат» птицам предлагалось выбрать себе партнера из индивидуумов противоположного пола, выстроившихся за миниатюрными витринами. Они отдавали предпочтение двоюродным сибсам перед родными сибсами и неродственными птицами. Результаты дальнейших экспериментов позволяют считать, что молодые куропатки научаются узнавать особенности членов своего выводка, а затем, в более позднем возрасте, обычно выбирают брачных партнеров, которые достаточно, но не слишком похожи на этих собратьев.

Таким образом, куропатки, очевидно, избегают кровосмешения благодаря отсутствию у всех у них внутреннего вожделения по отношению к тем, с кем они выросли. Другие животные делают это, соблюдая законы сообщества, налагаемые ими правила расселения. Например, у львов молодых самцов выгоняют из родительского прайда, где остаются родственные им самки, которые могли бы соблазнить их, и эти самцы участвуют в размножении только в том случае, если им удается захватить другой прайд. В сообществах шимпанзе и горилл уходят из стада и ищут брачных партнеров в других группах обычно молодые самки. Оба типа расселения, так же как и систему, наблюдаемую у куропаток, можно обнаружить в различных цивилизациях вида Homo sapiens.

id="note6.9">

[6.9]

Поскольку [хозяевам кукушки] не грозит паразитирование со стороны членов их собственного вида…

Это, вероятно, относится к большинству видов птиц. Тем не менее не следует удивляться тому, что некоторые птицы паразитируют в гнездах собственного вида. И в самом деле, число видов, у которых обнаруживается это явление, постоянно увеличивается, особенно в последнее время, когда для установления родственных связей между видами стали применять новые методы молекулярной биологии. По теории эгоистичного гена это может происходить даже гораздо чаще, чем нам до сих пор было известно.

id="note6.10">

[6.10]

Кин-отбор у львов

Против взгляда Бертрама на роль кин-отбора как главной движущей силы сотрудничества у львов возражали К. Пакер (C. Packer) и А. Пьюзи (A. Pusey). По их мнению, реципрокный альтруизм по меньшей мере столь же пригоден в качестве объяснения сотрудничества у львов, как и кин-отбор. Вероятно, правы обе стороны. В гл. 12 подчеркивается, что реципрокность («око за око») может эволюционировать только в том случае, если изначально будет создан кворум реципрокаторов. Это обеспечивает достаточную вероятность того, что возможный партнер окажется реципрокатором. Родство, очевидно, представляет собой самый явный способ осуществления этого. Родственники, естественно, часто бывают похожи друг на друга, поэтому даже если в популяции в целом не достигается необходимая критическая частота, она может быть достигнута в пределах данной семьи. Быть может, сотрудничеству у львов было положено начало теми кин-эффектами, на которые указывает Бертрам, и это создало условия, необходимые для того, чтобы отбор благоприятствовал реципрокности. Разногласия относительно львов могут быть разрешены только на основании фактов, а факты, как всегда, говорят нам лишь о данном конкретном случае, не затрагивая общие теоретические положения.

id="note6.11">

[6.11]

Если C — мой идентичный близнец…

Теперь достаточно широко известно, что идентичные близнецы теоретически так же дороги вам, как дороги себе вы сами — в том случае, если есть гарантия, что это действительно идентичный близнец. Менее широко известно, что то же самое относится к матери, если гарантировано ее единобрачие. Если вы уверены, что ваша мать будет продолжать рожать детей от вашего отца и только от него, то ваша мать генетически так же дорога вам, как ваш идентичный близнец или вы сами. Подумайте о себе как о машине, производящей потомков. В таком случае ваша единобрачная мать-машина, производящая (родных) сибсов, а родные сибсы генетически столь же дороги вам, как и ваши собственные потомки. Конечно, при этом мы пренебрегаем всевозможными практическими соображениями. Например, ваша мать старше вас, хотя повышает это обстоятельство или понижает ее шансы на размножение в будущем по сравнению с вами самим, зависит от конкретных обстоятельств — общего правила здесь сформулировать нельзя.

В этих рассуждениях сделано допущение, что на вашу мать можно положиться в том смысле, что она будет продолжать рожать детей от вашего отца, а не от какого-то другого мужчины. Степень, до которой на нее можно положиться, зависит от системы спаривания данного вида. Если вы принадлежите к виду, для которого обычен промискуитет, то вы, очевидно, не можете быть уверены в том, что потомок вашей матери — ваш родной брат (или сестра). Даже в условиях идеального единобрачия существует одно неустранимое обстоятельство, из-за которого у вашей матери шансов меньше, чем у вас. Ваш отец может умереть. В этом случае ваша мать, как бы она этого ни желала, вряд ли могла бы продолжать рожать от него детей, не правда ли?

Так вот, на самом деле может. Совершенно очевидно, что обстоятельства, при которых это может произойти, представляют большой интерес для теории кин-отбора. Будучи млекопитающими, мы привыкли к мысли, что рождение следует за совокуплением по прошествии определенного и довольно короткого промежутка времени. Мужчина может стать отцом посмертно, но спустя не более девяти месяцев после своей смерти (если не считать оплодотворения замороженной спермой, хранящейся в банках спермы). Однако в нескольких группах насекомых самка хранит в себе в течение всей жизни запас спермы, оплодотворяя ею яйца год за годом, нередко в течение долгого времени после гибели своего брачного партнера. Если вы принадлежите к одному из таких видов, то вы можете потенциально быть совершенно уверены, что ваша мать будет продолжать оставаться надежным «генетическим шансом». У муравьев матка спаривается лишь во время единственного в ее жизни брачного полета, происходящего довольно рано в ее жизни. Затем она сбрасывает крылья и не спаривается больше никогда. Считается, что у многих видов муравьев матка во время брачного полета спаривается с несколькими самцами. Но если вы принадлежите к одному из тех видов, для самок которых характерно только единобрачие, то в генетическом отношении вы можете положиться на свою мать по меньшей мере с такой же уверенностью, как на самого себя. Главное преимущество быть молодым муравьем по сравнению с молодым млекопитающим состоит в том, что для вас не имеет значения, жив ваш отец или мертв (он почти наверное мертв!). Вы можете быть совершенно уверены, что сперма вашего отца продолжает жить после его смерти и что ваша мать может продолжать производить для вас родных братьев и сестер.

Отсюда следует, что если нас интересует эволюционное происхождение заботы, проявляемой братьями и сестрами друг о друге, и таких каст, как солдаты у насекомых, то мы должны отнестись с особым вниманием к тем видам, самки которых запасаются спермой на. всю жизнь. Что касается муравьев, пчел и ос, то они обладают некой генетической особенностью — гаплодиплоидией (см. гл. 10), которая, возможно, определила высокое развитие у них общественного образа жизни. Настоящим примечанием я хочу показать, что гаплодиплоидия — не единственный предрасполагающий фактор.

Хранение запаса спермы в течение всей жизни имеет, возможно, по меньшей мере столь же важное значение. В идеальных условиях эта черта может сделать мать такой же ценной в генетическом отношении и в той же степени заслуживающей «альтруистической» помощи, как и идентичный близнец.

id="note6.12">

[6.12]

...интересные сведения могут нам сообщить социальные антропологи.

Это замечание теперь вгоняет меня в краску. С тех пор я узнал, что социальным антропологам не только есть что сказать об «эффекте брата матери» — многие из них уже многие годы только об этом и говорят! «Предсказанный» мною эффект — эмпирический факт, наблюдаемый во многих цивилизациях, которые хорошо известны антропологам на протяжении ряда десятилетий. Кроме того, когда я высказал конкретную гипотезу, что «в обществе, в котором супружеская неверность широко распространена, дядья с материнской стороны должны быть более альтруистичны, чем „отцы“, поскольку у них больше оснований быть уверенными в своих родственных связях с ребенком» (с. 83), я, к сожалению, упустил из виду, что Ричард Александер (Richard Alexander) уже высказал эту мысль (примечание об этом я сделал при допечатке тиража первого издания этой книги). Гипотеза была проверена, в том числе самим Александером, с использованием количественных данных, опубликованных в антропологической литературе, и результаты оказались благоприятными.

>

Глава 7. Планирование семьи

id="note7.1">

[7.1]

Уинн-Эдвардс, на ком лежит главная ответственность за распространение идеи группового отбора…

К Уинн-Эдвардсу в общем относятся мягче, чем обычно принято относиться к еретикам в науке. Несмотря на явную ошибочность его высказываний, ему повсеместно ставят в заслугу (хотя лично я полагаю, что эта заслуга несколько преувеличивается) то, что он способствовал созданию более ясных представлений об отборе. Сам он великодушно отрекся от своих взглядов в 1978 г., написав:

В настоящее время все представители теоретической биологии пришли к единому мнению, что невозможно создать правдоподобные модели, с помощью которых медленно протекающий групповой отбор мог бы догонять гораздо более быстрое распространение эгоистичных генов, повышающих индивидуальную приспособленность. Поэтому я присоединяюсь к их точке зрения.

Нельзя не признать все благородство этого отречения, но, к сожалению, в своей последней книге он отрекся и от него.

Групповой отбор в том смысле, в каком мы все его долгое время понимали, теперь оказался даже в еще большей немилости у биологов, чем в то время, когда было опубликовано первое издание этой книги. Возможно, что вы считаете иначе: выросло целое поколение ученых, особенно в Америке, разбрасывающих направо и налево термин «групповой отбор». Под него подводят самые разные случаи, которые прежде (а для многих из нас и до сих пор) просто и ясно объяснялись как результат чего-то другого, скажем кин-отбора. Мне кажется бессмысленным раздражаться из-за подобных семантических вульгарностей. Между тем проблема группового отбора была весьма удовлетворительно разрешена десять лет назад Джоном Мэйнардом Смитом и другими; не может не вызывать досады, что разногласия, существующие в настоящее время между двумя поколениями и двумя нациями, вызваны на самом деле всего лишь различиями в словоупотреблении.

Особенно огорчительно, что философы, с опозданием занявшиеся этой проблемой, в самом начале были введены в заблуждение недавними терминологическими капризами. Я рекомендую обратиться к книге Алена Грейфена (Alan Grafen) «Естественный отбор, кин-отбор и групповой отбор», в которой ясно и, я надеюсь, теперь окончательно, разобрана проблема неогруппового отбора.

>

Глава 8. Битва поколений

id="note8.1">

[8.1]

Р. Трайверс в 1972 г. искусно разрешил эту проблему…

Статьи Роберта Трайверса, публиковавшиеся в начале семидесятых годов, были одним из самых важных факторов, вдохновлявших меня в работе над первым изданием этой книги; в конце концов его идеи, составляющие главное содержание гл. 8, были изложены в его собственной книге «Социальная эволюция». Я рекомендую прочитать эту книгу не только из-за ее содержания, но и из-за ее стиля: ясный, академически корректный, но с точно отмеренной долей антропоморфического легкомыслия, чтобы поддразнить напыщенных персон, и приправленный автобиографическими отступлениями. Я не могу удержаться от того, чтобы не привести одно из них, настолько оно характерно. Трайверс описывает, с каким воодушевлением он наблюдал за взаимоотношениями между двумя самцами павианов в Кении: «Была и другая причина моего волнения — я невольно отождествлял одного из павианов с Артуром, очаровательным юношей в расцвете сил…» Новая глава, написанная Трайверсом, о конфликте родители — потомки доводит предмет изложения до современного уровня. В сущности мало что можно добавить к его статье 1974 г. Теория выдержала проверку временем. Более детализированные математические модели подтвердили, что в значительной мере словесные рассуждения Трайверса действительно вытекают из общепризнанной дарвиновской теории.

id="note8.2">

[8.2]

Родитель всегда побеждает.

В своей книге «Дарвинизм и дела человеческие» (с. 39) Александер великодушно признал, что он был неправ, утверждая, что победа родителей в конфликте родители—потомки неизбежно следует из основополагающих допущений дарвинизма. Теперь мне кажется, что его тезис об асимметричном преимуществе, которым обладают родители над своими потомками в битве поколений, может быть подкреплен доводом иного рода; о нем мне сообщил Эрик Чарнов.

Чарнов писал об общественных насекомых и о происхождении стерильных каст, но его рассуждения имеют более широкое приложение, и я постараюсь обобщить их. Рассмотрим молодую самку какого-нибудь моногамного вида, не обязательно насекомого, находящуюся на пороге половой зрелости. Перед ней стоит дилемма: уйти из родительского гнезда и попытаться размножаться самостоятельно или же остаться и помогать выращивать своих младших братьев и сестер. Биология размножения ее вида дает ей уверенность в том, что ее мать будет продолжать заботиться о ее родных братьях и сестрах в течение длительного времени. По логике Гамильтона эти сибсы представляют для нее совершенно такую же генетическую «ценность», какую представляли бы ее собственные потомки. В той мере, в какой это касается степени генетического родства, молодой самке безразлично, какую из двух возможностей выбрать; ее не «заботит», уйдет она или останется. Однако ее родителям далеко небезразличен ее выбор. С точки зрения ее матери это выбор между внуками и детьми. В генетическом плане ценность новых детей вдвое выше, чем ценность новых внуков. Если мы говорим о конфликте между родителями и потомками, связанном с тем, покидают ли потомки гнездо или остаются и помогают родителям, то, по мнению Чарнова, разрешить этот конфликт для родителей совсем несложно по той простой причине, что только родители и воспринимают эту ситуацию как конфликт!

Все это похоже на состязание между двумя бегунами, в котором один получит 1000 фунтов только в том случае, если он победит, а его противник получит те же 1000 фунтов независимо от того, победит он или будет побежден. Следует ожидать, что первый бегун будет больше стараться и что если во всем остальном возможности соперников равны, то он, вероятно, победит. На самом деле позиция Чарнова прочнее, чем можно судить по этой аналогии, потому что затраты на бег без препятствий не так уж велики, чтобы отпугнуть многих людей, независимо от того, получат они награду или нет. Для дарвинистских игр такие олимпийские идеалы — слишком большая роскошь: за усилия, прилагаемые в одном направлении, всегда приходится расплачиваться напрасной потерей усилий в другом направлении; т. е. если бы речь шла о спорте, чем больше сил вы затрачиваете в каком-то одном состязании, тем меньше вероятность, что вам удастся победить в будущих соревнованиях, поскольку силы будут истощены.

У разных видов условия различаются, а поэтому предсказать результаты дарвинистских игр не всегда возможно. Тем не менее, если принимать во внимание только степень генетического родства и допустить моногамную систему спаривания (с тем чтобы дочь была уверена, что ее сибсы — это в самом деле ее родные сибсы), можно ожидать, что старой матери путем различных манипуляций удастся добиться, чтобы ее молодая половозрелая дочь осталась с ней и оказывала ей помощь. Для матери это чистый выигрыш, тогда как у дочери нет никаких мотивов сопротивляться манипуляциям матери, потому что в генетическом плане ей безразлично, на какой из двух возможностей остановить свой выбор.

И снова важно подчеркнуть, что в этих рассуждениях необходимо учитывать фактор «при прочих равных условиях». Несмотря на то, что прочие условия обычно не бывают равны, рассуждения Чарнова все еще могут оказаться полезными для Александера или для любого другого сторонника теории манипуляции. Во всяком случае практические доводы Александера в пользу того, что победа должна остаться за родителями — они крупнее, сильнее и т. п., — представляются обоснованными.

>

Глава 9. Битва полов

id="note9.1">

[9.1]

...насколько более жестким должен быть конфликт между супругами, вовсе не связанными родством?

Как часто бывает, в этой первой фразе негласно подразумевается «при прочих равных условиях». Супруги, по всей вероятности, много выигрывают в результате кооперации. На протяжении настоящей главы мы убедимся в этом не один раз. Ведь, в конце концов, весьма вероятно, что супруги будут вести игру с ненулевой суммой — игру, в которой, скооперировавшись, оба могут увеличивать свои выигрыши, вместо того, чтобы выигрыш одного неизбежно сопровождался проигрышем другого (объяснения вы найдете в гл. 12). Это одно из тех мест книги, где я слишком сильно приблизился к циничному, эгоистичному взгляду на жизнь. Тогда это казалось необходимым, так как преобладающая в то время точка зрения на брачные церемонии у животных слишком сильно отклонилась в противоположную сторону. Почти повсеместно люди совершенно некритически допускали, что брачные партнеры готовы к безграничному сотрудничеству друг с другом. Возможность эксплуатации даже не обсуждалась. В этом историческом контексте кажущийся цинизм фразы, с которой начинается глава, был понятен, но сегодня я бы несколько смягчил тон. Точно так же замечания о сексуальных ролях мужчины и женщины, сделанные в конце этой главы, теперь кажутся мне наивными. Более исчерпывающее изложение эволюции половых различий у человека можно найти в книгах Мартина Дейли (Martin Daly) и Марго Уилсон (Margo Wilson) «Пол, эволюция и поведение» и Дональда Саймонза (Donald Symons) «Эволюция сексуальности у человека».

id="note9.2">

[9.2]

...число детей у мужчины практически неограничено. С этого момента и начинается эксплуатация женщины.

В настоящее время акцентирование внимания на неравенстве размеров сперматозоида и яйцеклетки как на главном факторе, определяющем разные роли полов, представляется мало обоснованным. Хотя один сперматозоид очень мал и содержание в нем питательных веществ ничтожно, произвести миллионы сперматозоидов и успешно ввести их в самку в условиях жесткой конкуренции — задача, требующая больших затрат. Я предпочитаю теперь объяснять фундаментальную асимметрию между самцами и самками следующим образом.

Начнем с двух полов, у которых нет никаких особых атрибутов, отличающих самцов от самок. Обозначим их нейтральными символами A и B. Перед каждым животным, будь это A или B, стоит проблема выбора: время и усилия, затрачиваемые на борьбу с врагами, не могут быть использованы на выращивание уже существующего потомства, и наоборот. Следует ожидать, что каждое животное распределяет свои усилия между этими альтернативными задачами. Я веду к тому, что индивидуумы A могут остановить свой выбор на ином соотношении усилий, затрачиваемых на выполнение этих двух задач, нежели индивидуумы B, и с этого момента возможно возникновение между ними неравенства, которое в дальнейшем будет непрерывно возрастать.

Допустим, например, что два пола, А и B, с самого начала придерживаются различного мнения о том, как они могут добиться большого успеха: вкладывая в детей или вкладывая в борьбу (под «борьбой» я имею в виду все виды непосредственных боев между индивидуумами одного и того же пола). Первоначально расхождение во мнениях может быть очень небольшим, поскольку я хочу показать, что оно обладает тенденцией к возрастанию. Допустим, что индивидуумы A с самого начала исходят из принципа, что борьба способствует их репродуктивному успеху больше, чем забота о потомстве; индивидуумы B, напротив, считают, что забота о потомстве несколько важнее для их репродуктивного успеха, чем борьба. Это означает, например, что хотя индивидууму A забота о потомстве дает, конечно, некоторый выигрыш, разница между более и менее заботливыми среди индивидуумов A меньше, чем между удачливым и неудачливым бойцами среди тех же A. Среди индивидуумов B картина прямо противоположная. Таким образом, за счет данного количества усилий индивидуум A получит выигрыш, если займется борьбой, тогда как индивидуум B скорее достигнет успеха, если направит все свои усилия не на борьбу, а на заботу о потомстве.

Поэтому в последующих поколениях индивидуумы A будут заниматься борьбой немного больше, чем их родители, а индивидуумы B будут бороться немного меньше, а заботиться о потомстве немного больше, чем их родители. При этом различие между лучшим A и худшим A в отношении борьбы даже возрастет, а различие между ними в отношении заботы о потомстве даже уменьшится. Поэтому индивидуум А может выиграть даже больше, направив свои усилия на борьбу, а направив их на заботу о потомстве — даже меньше. Прямо противоположные изменения будут происходить в последующих поколениях с индивидуумами B. Ключевая идея здесь состоит в том, что небольшое изначальное различие между полами может оказаться самоусиливающимся: отбор может начаться со слабого начального различия и постепенно усиливать это различие, пока индивидуумы А не превратятся в тех, кого мы теперь называем самцами, а индивидуумы B в тех, кого называют самками. Изначальное различие может быть настолько слабым, что возникает случайно. В конце концов стартовые условия двух полов вряд ли могут быть совершенно идентичными.

Как вы убедитесь, это довольно похоже на созданную Паркером, Бейкером и Смитом (Parker, Baker, Smith) теорию о раннем разделении примитивных гамет на сперматозоиды и яйцеклетки (см. с. 107). Здесь она изложена в более общем виде. Разделение на сперматозоиды, и яйцеклетки — лишь один из аспектов более глубокого разделения функций полов. Вместо того, чтобы рассматривать его как главное и выводить из него все характерные атрибуты самцов и самок, у нас теперь есть возможность объяснить разделение на сперматозоиды и яйцеклетки и все другие аспекты с одних и тех же позиций. Нам следует лишь допустить, что существуют два пола, которым надо спариваться друг с другом; ничего больше знать о них нам не надо. Исходя из этого минимального допущения, мы можем с определенностью сказать, что как бы ни были равны оба пола изначально, они будут дивергировать в разных направлениях, специализируясь к противоположным и комплементарным репродуктивным стратегиям. Разделение на сперматозоиды и яйцеклетки — один из симптомов более всеобъемлющего разделения, а не его причина.

id="note9.3">

[9.3]

Воспользуемся методом анализа агрессивных конфликтов, созданного Мэйнардом Смитом, и применим его к взаимоотношениям полов.

Эту мысль о том, чтобы постараться найти эволюционно стабильную смесь стратегий в пределах одного пола, уравновешенную эволюцинно стабильной смесью стратегий другого пола, теперь продолжают развивать как сам Мэйнард Смит, так и действующие независимо от него, но в том же направлении Ален Грейфен и Ричард Сибли (Richard Sibly). Статья Грейфена и Сибли сложнее в чисто техническом отношении, а статью Мэйнарда Смита легче объяснить на словах. Коротко, он начинает с рассмотрения двух стратегий — Охранять и Бросать, к которым могут прибегнуть индивидуумы и одного, и другого пола. Как и в моей модели «Скромница/Распутница и Верный/Гуляка», интересно выяснить, какие комбинации стратегий самцов и какие комбинации стратегий самок бывают стабильными одновременно. Ответ на этот вопрос зависит от тех допущений, которые мы примем в отношении экономических условий, специфичных для данного вида. Примечательно, однако, что как бы мы ни варьировали эти экономические допущения, получить полный континуум изменяющихся количественно стабильных результатов нам не удастся. Модель приводит к одному из всего лишь четырех стабильных результатов. Эти четыре результата были названы по названиям тех животных, у которых они наблюдались: Утки (самец бросает, самка охраняет). Колюшка (самка бросает, самец охраняет), Плодовая мушка (оба бросают) и Гиббон (оба охраняют).

Есть еще и другое, даже более интересное обстоятельство. Как говорилось в гл. 5, модели ЭСС могут привести к любому из двух результатов, причем оба они одинаково стабильны. Это относится и к описанной здесь модели Мэйнарда Смита. Особенно примечательно, что определенные пары результатов, в отличие от других пар, бывают одновременно стабильны при одинаковых экономических условиях. Так, например, при одном комплексе условий одновременно стабильны стратегии Утка и Колюшка. Какая из них возникает на самом деле, зависит от удачи или, точнее, от случайностей в эволюционной истории — от начальных условий. При другом комплексе условий стабильны стратегии Гиббон и Плодовая мушка. Опять-таки возникновение у данного вида той, а не другой стратегии определяется случайными событиями в его истории. Однако ни при каких условиях стратегии Гиббон и Утка не бывают одновременно стабильны, так же как не существует условии, при которых могут быть одновременно стабильными стратегии Утка и Плодовая мушка. Из этого основанного на «стабильности парности» анализа конгениальных и неконгениальных сочетаний ЭСС вытекают интересные следствия, которые могут помочь нам в воссоздании эволюционной истории. Например, результаты анализа наводят на мысль, что некоторые типы переходов от одной системы спаривания к другой в процессе эволюции можно считать вероятными, а другие маловероятными. Мэйнард Смит исследует эти хитросплетения эволюционной истории в кратком обзоре систем спаривания по всему животному миру, заканчивая его незабываемым риторическим вопросом: «Почему самцы млекопитающих не лактируют?»

id="note9.4">

[9.4]

...можно показать, что на самом деле никакой осцилляции происходить не будет. Система перейдет в стабильное состояние.

Как мне ни жаль, но это утверждение ошибочно. Однако его ошибочность представляет определенный интерес, так что я оставил свою фразу без изменений и теперь постараюсь обстоятельно разъяснить ее. Это, в сущности, ошибка такого же рода, как и та, которую Гейл и Иве обнаружили в оригинальной статье Мэйнарда Смита и Прайса (см. примечание 2 к гл. 5). На мою ошибку указали два матбиолога, работающие в Австрии — П. Шустер и К. Зигмунд (P. Schuster, K. Sigmund).

Я правильно рассчитал те отношения Верных самцов к Гулякам и Скромниц к Распутницам, при которых самцы этих двух типов добивались одинакового успеха, так же как и самки двух типов. Это было действительно равновесие, однако я не проверил, было ли оно стабильным. Это мог быть опасный острый пик, а не надежно защищенная долина. Для проверки на стабильность следует выяснить, что произойдет, если слегка нарушить равновесие (столкните мяч с горы — и вы потеряете его навсегда, подтолкните его со дна долины вверх по склону, и он вернется назад). В моем частном численном примере равновесным соотношением для самцов было 5/8 Верных и 3/8 г.ляк. А что, если чисто случайно доля Гуляк в популяции возрастет до уровня, несколько превышающего равновесный? Для того чтобы равновесие можно было считать стабильным и саморегулирующимся, необходимо, чтобы стратегия Гуляк немедленно стала чуть менее успешной. К сожалению, как показали Шустер и Зигмунд, происходит как раз обратное: Гуляки начинают добиваться большего успеха! Их частота в популяции, таким образом, не только не саморегулируется, но самовозрастает. Она возрастает, но не бесконечно, а лишь до известного предела. Если построить динамическую модель на компьютере, как я это теперь проделал, то возникает бесконечно повторяющийся цикл. По иронии судьбы, это в точности тот самый цикл, который я описал в качестве гипотетического на с. 145, однако я полагал, что это всего лишь поясняющий пример, подобно тому, как это было с Ястребами и Голубями. По аналогии с Ястребами и Голубями я допускал, причем совершенно ошибочно, что этот цикл — чисто гипотетический и что система действительно придет к стабильному равновесию. Этот последний удар, нанесенный Шустером и Зигмундом, не позволяет добавить решительно ничего.

Короче говоря, можно сделать два заключения:

1) битва полов имеет много общего с хищничеством;

2) поведение влюбленных столь же изменчиво, как луна, и столь же непредсказуемо, как погода.

Конечно, люди давно заметили это, не прибегая к дифференциальным уравнениям.

id="note9.5">

[9.5]

...примеры отцовской преданности… среди рыб… обычны. Почему?

Гипотеза о рыбах, которую выдвинула Тамсин Карлайль (Tamsin Carlisle) в процессе наших индивидуальных занятий, была теперь проанализирована Марком Ридли (Mark Ridley) в его исчерпывающем сравнительном исследовании заботы о потомстве по всему животному миру. Его статья, начало которой, так же как и гипотезе Карлайль, положила сделанная для меня курсовая работа, — это удивительно остроумный ход. К сожалению, он не нашел подтверждения гипотезе.

id="note9.6">

[9.6]

...какого-то нестабильного процесса, вышедшего из-под контроля.

Фишеровская центробежная теория полового отбора, которую он изложил крайне коротко, теперь разработана математически Р. Ланде (R. Lande) и другими. Она превратилась в довольно сложный предмет, хотя, уделив ее объяснению достаточно места, можно обойтись без математики. Однако для этого пришлось бы посвятить ей целую главу, как было сделано в «Слепом часовщике» (гл. 8), так что здесь я ограничусь сказанным.

Вместо этого я займусь одной проблемой полового отбора, которой я никогда не уделял должного внимания ни в одной из своих книг. Каким образом поддерживается необходимый уровень изменчивости? Дарвиновский отбор может функционировать только в том случае, если имеется достаточная генетическая изменчивость, т. е. если есть из чего отбирать. Начав, например, выводить породу кроликов, уши которых становились бы все длиннее и длиннее, вы на первых порах добьетесь успеха. У среднего кролика в природной популяции уши имеют среднюю длину (разумеется, по кроличьим стандартам; по нашим стандартам уши у него, конечно, очень длинные). У нескольких кроликов уши короче среднего, а у нескольких других — длиннее. Скрещивая друг с другом только самых длинноухих кроликов, вы добьетесь увеличения средней длины ушей в дальнейших поколениях. Это будет происходить в течение некоторого времени. Но если продолжать скрещивание индивидуумов с самыми длинными ушами, то наступит момент, когда необходимая для этого изменчивость иссякнет. У всех кроликов будут «самые длинные» уши, и эволюция застопорится. При нормальной эволюции такие проблемы не возникают, потому что внешняя среда в большинстве случаев не оказывает постоянного и непоколебимого давления в одном направлении. «Наилучшая» длина для любой отдельной части тела данного животного в норме не будет «чуть длиннее существующей в настоящее время средней, независимо от того, какова в данный момент эта средняя». Скорее всего наилучшая длина будет постоянной, скажем 7,5 см. Но половой отбор действительно может обладать неудобным свойством: стремлением догнать непрерывно удаляющийся «оптимум». Вкусы самок в самом деле могут требовать все более длинных ушей у самцов, независимо от того, какой длины уже достигли уши в нынешней популяции. В результате может действительно наступить серьезное истощение изменчивости. И тем не менее половой отбор, очевидно, работает; мы в самом деле видим у самцов украшения, достигшие нелепых размеров. Перед нами очевидный парадокс, который можно назвать парадоксом исчезающей изменчивости.

Ланде разрешает этот парадокс с помощью мутационного процесса. По его мнению, частота мутаций всегда будет достаточной, чтобы поддерживать непрерывный отбор. Раньше люди сомневались в этом, потому что в своих рассуждениях они оперировали одновременно лишь одним геном: частота мутаций в каждом отдельном генетическом локусе слишком низка, чтобы разрешить парадокс исчезающей изменчивости. Ланде напоминает нам, что на «хвосты» и другие структуры, подверженные половому отбору, оказывает влияние бесконечно большое число различных генов — «полигенов», мелкие эффекты которых суммируются. Кроме того, в процессе эволюции набор полигенов, влияющих на изменчивость «длины хвоста», изменяется: в него включаются новые гены, тогда как старые утрачиваются. Мутационный процесс может затронуть каждый из этого обширного и изменяющегося набора генов, так что исчезает самый парадокс исчезающей изменчивости.

У. Гамильтон подходит к этому парадоксу иначе. Его ответ звучит так же, как и его ответы на большинство других вопросов, возникающих сегодня: «Паразиты». Вернемся к ушам кролика. Разумно предположить, что оптимальная их длина зависит от разного рода акустических факторов, и вряд ли эти факторы по мере смены одного поколения другим будут непрерывно изменяться в одном определенном направлении. Возможно, что наилучшая длина для кроличьих ушей и не абсолютно постоянная, но все же вряд ли отбор может сдвинуть ее в том или другом направлении так сильно, что она выйдет за пределы изменчивости, установленные нынешним генофондом. А поэтому никакого парадокса исчезающей изменчивости просто нет.

Обратимся теперь к среде, подобной создаваемой паразитами и подверженной резким колебаниям. В мире, полном паразитов, действует сильный отбор в пользу способности противостоять им. Естественный отбор будет благоприятствовать тем индивидуальным кроликам, которые в наименьшей степени уязвимы для существующих вокруг паразитов. Эпидемии возникают и кончаются. Сегодня это может быть миксоматоз, на следующий год — чума, еще через год — кроличий СПИД и т. д. Затем, по прошествии десятилетнего цикла, это может быть снова миксоматоз и т. д. Или же у самого вируса миксоматоза в процессе эволюции могут возникнуть адаптации, позволяющие ему преодолеть механизмы устойчивости, выработавшиеся у кроликов. Гамильтон рисует циклы контрадаптаций и контр-контрадаптаций, совершающие бесконечные витки во времени и беспрестанно упрямо обновляющие определение «самого лучшего» кролика.

Вывод из всего этого состоит в том, что адаптации, обеспечивающие устойчивость к инфекциям, в чем-то очень важном отличаются от адаптации к физической среде. В то время, как существование вполне постоянной «наилучшей» длины для задних ног кролика возможно, никакого «самого лучшего» кролика в смысле устойчивости к инфекции не существует. По мере изменения наиболее опасной в данное время болезни изменяется и нынешний «наилучший» кролик. Являются ли паразиты единственными селективными факторами, действующими таким образом? А как, например, насчет хищников и жертв? Гамильтон соглашается, что в своей основе взаимоотношения хищник-жертва подобны взаимоотношениям паразит-хозяин. Но хищники или жертвы не эволюционируют так быстро, как многие паразиты; и эволюция у них детальных контрадаптаций по типу «на каждый ген — новый ген» менее вероятна, чем у паразитов.

Гамильтон использует циклические изменения, которыми паразиты бросают вызов своим хозяевам, в качестве основы для еще более грандиозной теории — его теории о том, почему вообще существует пол. Однако здесь нас интересует, как он использует паразитов для решения вопроса о парадоксе исчезающей изменчивости при половом отборе. Он полагает, что наследственная устойчивость к инфекциям у самцов — самый важный критерий, которым руководствуются самки в своем выборе. Инфекция — это такое бедствие, что любая возможность заранее выявить ее у потенциальных супругов дает самке колоссальное преимущество. Самка, способная выступить в роли хорошего врача-диагноста и выбрать себе в брачные партнеры только самого здорового самца, заработает для своих детей здоровые гены. А поскольку определение «самый лучший кролик» постоянно изменяется, то всегда будет существовать нечто важное, что должны иметь в виду самки, когда они оценивают самцов, чтобы сделать выбор. Очевидно, всегда должно существовать некоторое число «хороших» и некоторое число «плохих» самцов. Они не могут все стать «хорошими» после отбора на протяжении многих поколений, потому что к тому времени паразиты изменятся, так что изменится и определение «хорошего» кролика. Гены, определяющие устойчивость к одному штамму вируса миксоматоза, окажутся бессильными против нового штамма этого вируса, появившегося на сцене в результате мутации. И так далее, на протяжении бесконечных циклов возникающих в процессе эволюции возбудителей эпидемий. Паразиты никогда не отступают, так что и самки не могут прекратить свой бесконечный поиск здоровых брачных партнеров.

Как же реагируют самцы на такое внимательное изучение их самками, выступающими в роли врачей? Будет ли отбор благоприятствовать генам, способным создать ложное впечатление здоровья? Вначале, возможно, этот номер пройдет, но в дальнейшем отбор, действуя на самок, усилит их диагностические способности, так что они начнут отличать обманщиков от действительно здоровых самцов. В конечном счете, как полагает Гамильтон, самки станут такими опытными врачами, что самцам придется либо вовсе отказаться от саморекламы, либо прибегать лишь к честной рекламе. Если какая-либо сексуальная реклама самцов становится слишком преувеличенной, это, очевидно, объясняется тем, что она действительно соответствует состоянию их здоровья. Эволюция самцов должна привести к тому, чтобы самкам было легко распознавать здоровых самцов (если они в самом деле здоровы). Действительно здоровым самцам должно быть приятно возвещать об этом. Нездоровым самцам, конечно, возвещать не о чем, но что они могут поделать? Если они не будут по крайней мере стараться разыгрывать здоровых, самки сделают самые печальные для них заключения. Между прочим, все эти разговоры о врачах могут ввести в заблуждение, если кто-то начнет думать, что самки стремятся лечить самцов. Но самки заинтересованы лишь в том, чтобы поставить диагноз, причем интерес их отнюдь не альтруистичен. И я полагаю, что больше нет необходимости извиняться за такие метафоры, как «честность» и «делают заключения».

Возвращаясь к саморекламе, следует сказать, что ситуация выглядит так, будто самки вынуждают самцов к развитию неких медицинских термометров, которые постоянно торчали бы у них изо рта, позволяя самкам точно знать температуру самцов. Какие это могли бы быть «термометры»? Вспомните живописные длинные хвосты самцов райских птиц. Мы уже приводили элегантное объяснение, данное Фишером этому элегантному украшению. Гамильтоновское объяснение гораздо более прозаично. Заболевания у птиц очень часто сопровождаются диареей. Длинный хвост при этом выглядел бы очень непрезентабельно. Если надо скрыть диарею, то лучший способ сделать это — не иметь длинного хвоста. Опять же, если надо продемонстрировать, что диареи нет, то наилучший способ доказать это — завести очень длинный хвост. При этом будет особенно бросаться в глаза, что хвост чистый. Если у самца хвост вообще мало заметен, самки не смогут понять, чистый он или замаранный, и станут предполагать худшее. Гамильтон мог бы и не согласиться именно с таким объяснением эволюции хвоста у райских птиц, однако это хороший пример объяснения того сорта, которое ему импонирует.

Я уподобил самок врачам, ставящим диагноз, а самцов — больным, облегчающим им задачу, выставляя «термометры» напоказ. Размышления о других диагностических приборах — тонометре и стетоскопе — навели меня на некоторые соображения о половом отборе у человека. Я вкратце изложу их, хотя должен признаться, что они скорее занимательны, нежели правдоподобны. Сначала некая гипотеза о том, почему человек утратил приапову кость, или бакулум. Половой член мужчины в состоянии эрекции может стать таким твердым и жестким, что люди иногда в шутку выражают сомнение: а нет ли в нем кости? Ведь у многих млекопитающих в пенисе и в самом деле имеется бакулум — кость, придающая ему жесткость и помогающая поддерживать эрекцию. Более того, эта кость имеется у многих наших родичей-приматов; она есть даже у ближайших родичей человека — шимпанзе, хотя она у них очень мала и, по всей вероятности, находится на пути к исчезновению. По-видимому, у приматов наблюдается тенденция к редукции бакулума; Homo sapiens и несколько видов низших узконосых обезьян утратили его окончательно. Итак, мы избавились от кости, которая предположительно легко обеспечивала нашим предкам жесткость пениса. Теперь эрекция полностью зависит от гидравлической насосной системы, которая представляется дорогостоящим и обходным способом обеспечения этой функции. И, что самое главное, эрекция может не состояться, что весьма прискорбно (если не сказать больше) для генетического успеха самца в природных условиях. Что же тут могло бы помочь? Совершенно очевидно: конечно, кость в пенисе. Так почему же она не возникла у человека в процессе его эволюции? На этот раз биологи из бригады «генетического ограничения» не могут выйти из положения, воскликнув: «О, просто не возникла необходимая вариация!» До недавнего времени у наших предков была именно такая кость, и мы буквально изо всех сил постарались утратить ее! Почему?

Эрекция у мужчин достигается просто за счет кровяного давления. Предположение, что интенсивность эрекции равноценна тонометру врача и что женщины судят по ней о здоровье мужчины, к сожалению, неправдоподобно. Однако мы не обязательно должны ограничиваться метафорой тонометра. Если по тем или иным причинам неудавшаяся эрекция может служить чувствительным ранним показателем определенных расстройств здоровья, физических или психических, то некая версия этой теории может оказаться полезной. Все, что нужно самкам, это надежный инструмент для диагностики. При обычном медицинском обследовании врачи не применяют тест на эрекцию, они предпочитают попросить вас высунуть язык. Между тем неудавшаяся эрекция известна как ранний симптом диабета и некоторых нервных болезней. Гораздо чаще она бывает вызвана психологическими факторами (депрессия, состояние тревоги, переутомление, потеря уверенности в себе). (Можно представить себе, что у животных неудавшаяся эрекция бывает вызвана низким статусом самца в иерархической структуре сообщества. У некоторых низших узконосых обезьян пенис в состоянии эрекции сигнализирует об угрозе.) Нельзя считать неправдоподобным, что, совершенствуя под действием естественного отбора свои диагностические способности, самки могут собирать по крупицам всевозможные данные о состоянии здоровья самца и судят о его способности справляться со стрессовыми ситуациями по напряженности и положению его пениса. Однако наличие кости помешало бы этому! Не нужно быть особенно сильным или выносливым, чтобы иметь кость в пенисе; это доступно всякому. Таким образом, селективное давление со стороны женщин привело к утрате мужчинами бакулума, потому что только по-настоящему здоровые или сильные мужчины способны на действительно стойкую эрекцию, позволяющую женщинам поставить без помех правильный диагноз.

В этих построениях есть один момент, способный вызвать разногласия. Можно было бы спросить: каким образом женщины, послужившие фактором этого отбора, узнают, что ощущаемая ими жесткость обусловлена наличием кости, а не гидравлическим давлением? Ведь мы начали с замечания, что при эрекции пенис мужчины по твердости близок к кости. Я сомневаюсь, однако, чтобы на самом деле женщин было легко обмануть. Они тоже подвергались отбору, правде не на утрату кости, а на приобретение рассудительности. И не надо забывать, что женщина имеет возможность видеть пенис, когда он не находится в состоянии эрекции, и контраст разителен. Кости не способны спадаться, уменьшаясь в объеме (хотя можно допустить, что они могут втягиваться). Возможно, что именно существование пениса в двух разных обличиях гарантирует подлинность гидравлической рекламы.

Займемся теперь «стетоскопом». Рассмотрим другую серьезную проблему супружеского ложа — храп. Сегодня это просто некое бытовое неудобство. Но в далеком прошлом это мог быть вопрос жизни или смерти. В ночной тишине храп раздается очень громко. Он мог привлекать хищников очень издалека, что угрожало как самому храпуну, так и группе, в которой он находится. Почему же в таком случае многие люди храпят? Вообразите спящую группу наших предков в какой-нибудь плейстоценовой пещере, где мужчины храпят каждый на своей ноте, а женщины поневоле бодрствуют, так как им не остается ничего другого, кроме как слушать (я присоединяюсь к мнению о том, что мужчины храпят чаще). Не предоставляют ли мужчины таким образом женщинам преднамеренную и дополнительную информацию, которую врач получает с помощью стетоскопа? Не могут ли какие-то специфические особенности и тембр храпа данного мужчины отражать состояние его дыхательных путей? Я не хочу сказать, что люди храпят только тогда, когда они больны. Храп скорее можно сравнить с несущей частотой радиопередачи, которая всегда продолжает гудеть, независимо ни от чего; это четкий сигнал, который модулируется в зависимости от состояния носа и горла таким образом, что позволяет судить об этом состоянии. Мысль о том, что женщины предпочитают чистые трубные звуки, издаваемые храпуном при здоровых бронхах, храпам и фырканью, когда все забито мокротой, прекрасна, но я должен сознаться, что мне трудно вообще представить себе женщину, которая может решительно влюбиться в храпуна. И все же общеизвестно, как ненадежна интуиция. Возможно, что эти строки хотя бы заинтересуют какого-нибудь специалиста по бессонице. Кстати сказать, он мог бы заняться проверкой также и другой теории.

К этим двух спекуляциям не следует относиться слишком серьезно. Они имели бы успех, если бы к ним можно было пристегнуть принцип теории Гамильтона о том, как самки стараются выбирать здоровых самцов. Быть может, самое интересное в моих спекуляциях — это то, что они указывают на связь между теорией Гамильтона о паразитах и теорией гандикапа Амоса Захави. Из моей гипотезы о пенисе логически вытекает, что утрата бакулума создает помехи самцам, а эта утрата не просто случайна. Реклама, основанная на гидравлическом давлении, эффективна именно потому, что эрекция иногда терпит неудачу. Читатели-дарвинисты несомненно уловили эту подразумевающуюся «помеху» и она могла возбудить в них серьезные сомнения. Я прошу их отложить свое суждение до тех пор, пока они не прочитают следующее примечание о новом подходе к самому принципу гандикапа.

id="note9.7">

[9.7]

...сводящий с ума своей парадоксальностью «принцип гандикапа», выдвинутый Захави.

В первом издании я писал: «Я не верю в эту теорию, хотя я далеко не так уверен в правомерности своего скептицизма, как тогда, когда услышал о ней впервые». Я рад, что написал «хотя», потому что теперь теория Захави кажется мне гораздо более правдоподобной, чем в то время, когда я высказывал это мнение. Несколько уважаемых теоретиков стали недавно относиться к ней серьезно, в том числе мой коллега Ален Грейфен, который, как уже отмечалось в печати ранее, «обладает весьма досадным качеством всегда оказываться правым». Он построил на основании высказываний Захави математическую модель и утверждает, что она работает. И что это не какая-то фантастическая, понятная лишь посвященным пародия ни Захави, подобная тем, которыми забавлялись другие, а непосредственное математическое воплощение самой идеи Захави. Я собираюсь рассмотреть здесь первоначальную ЭСС-модель Грейфена, хотя сам он в настоящее время работает над полным генетическим вариантом, который должен в некоторых отношениях превзойти ЭСС-модель. Это не означает, что ЭСС-модель в самом деле ошибочна. Она представляет собой хорошую аппроксимацию, как, в сущности, все ЭСС-модели, в том числе и описанные в этой книге.

Принцип гандикапа потенциально приложим ко всем ситуациям, в которых индивидуумы пытаются судить о качестве других индивидуумов, но мы ограничимся рассмотрением самцов, рекламирующих себя самкам. Эта ситуация выбрана в интересах ясности; это один из тех случаев, когда сексизм местоимений действительно полезен. Грейфен отмечает, что существует по крайней мере четыре подхода к принципу гандикапа. Им можно дать следующие названия: 1) квалифицирующий гандикап (всякий самец, выживший несмотря на свой гандикап, очевидно, обладает и в остальном прекрасными качествами, так что самки выбирают его); 2) выявляющий гандикап (самцы выполняют какую-нибудь тяжелую задачу, с тем чтобы проявить свои скрытые таланты); 3) условный гандикап (гандикап развивается только у самцов высокого качества); и, наконец, 4) излюбленная интерпретация Грейфена, которую он назвал гандикапом стратегического выбора (у самцов имеется недоступная никому информация о собственных качествах, которая не предоставляется самкам и которую они используют для того, чтобы «решать», надо ли развивать данный гандикап и сколь значительным он должен быть). Грейфеновский гандикап стратегического выбора поддается анализу на ЭСС. Он не связан с предварительным допущением, что рекламы, используемые самцами, обойдутся дорого или создадут гандикапы. Напротив, самцы вольны развивать любые виды рекламы — честные или мошеннические, дорогостоящие или дешевые. Но Грейфен показывает, что при условии такой свободы выбора на старте система гандикапа вполне может оказаться стабильной.

Грейфен исходил из следующих четырех допущений.

1. Самцы действительно различаются по качеству. Качество — это не какое-то снобистское представление, подобно легкомысленной гордости за свой старый колледж или студенческое братство (я однажды получил письмо от одного читателя, который закончил его так: «Я надеюсь, что Вы не сочтете мое письмо самонадеянным, ведь я все-таки выпускник Бейлиол-Колледжа»). Качество для Грейфена означает, что существуют хорошие самцы и плохие самцы в том смысле, что самки выиграют в генетическом отношении, если они будут избирать в качестве брачных партнеров хороших самцов и избегать плохих. Хороший означает с крепкими мышцами, способный быстро бегать, находить добычу, строить прочные гнезда. Мы не говорим о финальном репродуктивном успехе самца, так как он зависит от того, выберет ли самка данного самца. Разговор об этом сейчас отвлек бы нас от сути дела; это может проявиться или не проявиться на модели.

2. Самки не могут непосредственно оценивать качество самца — им приходится полагаться на его рекламу. На этой стадии мы не делаем никаких допущений о честности этой рекламы. Честность — это что-то другое, она может быть обнаружена при моделировании, а может и не проявиться, но ведь для этого и создается модель. Самец может, например, нарастить себе накладные плечи, чтобы создать иллюзию крупных размеров и силы. Модель должна показать нам, будет ли такой фальшивый сигнал эволюционно стабильным или же естественный отбор окажет поддержку скромным, честным и правдивым рекламам.

3. В отличие от самок, которые их разглядывают, самцы в некотором смысле сами «знают», какого они качества; и они принимают определенную «стратегию» рекламирования — правило условного рекламирования в зависимости от своего качества. Как обычно, под «знают» я не имею в виду осознанное знание. Предполагается, что у самцов имеются гены, включающиеся условно — в зависимости от качества самого самца (есть основания полагать, что эта информация не является общедоступной; ведь гены самца встроены в его биохимию, т. е. по своему положению несомненно гораздо лучше могут реагировать на его качество, чем гены самки). Разные самцы выбирают разные правила. Например, один самец может следовать правилу: «Выставляю напоказ хвост, размеры которого пропорциональны моему истинному качеству»; другой может следовать прямо противоположному правилу. Это позволяет естественному отбору корректировать правила, отдавая предпочтение самцам, которые генетически запрограммированы таким образом, что способны применять различные правила. Уровень рекламы необязательно должен быть прямо пропорционален истинному качеству; самец мог бы выбрать даже противоположное правило. Нам лишь требуется, чтобы самцы были запрограммированы на применение какого-то правила для определения своего истинного качества и выбирали на этом основании тот или иной уровень рекламы (например, размеры хвоста или рогов). Что же касается того, какое из возможных правил в конечном счете окажется стабильным, то это опять-таки одна из задач, решать которую должна помочь модель.

4. Самки обладают параллельной возможностью создавать собственные правила. В их случае правила касаются выбора самцов на основании действенности рекламы последних (вспомните, что самки, или скорее их гены, не располагают, в отличие от самцов, сведениями о качестве как таковом). Одна самка, например, придерживается правила: «Полностью доверяй самцам», другая — правила: «Совершенно игнорируй рекламу самца», а третья — «Считай, что на самом деле все обстоит как раз наоборот тому, в чем хочет убедить реклама».

Итак, мы допустили существование самцов, различающихся по тем правилам, на основании которых они связывают качество с уровнем рекламы; и самок, различающихся по тем правилам, по которым они соотносят выбор брачного партнера с уровнем рекламы. До сих пор в наших рассуждениях самцы могут выбирать любое правило, связывающее качество с рекламой, а самки — любое правило, связывающее рекламу самцов с их выбором. В этом спектре возможных правил для самца и самки мы хотим найти пару эволюционно стабильных правил. Это немножко похоже на модель «Верный/Гуляка и Скромница/Распутница» в том смысле, что мы ищем эволюционно стабильное правило для самцов и эволюционно стабильное правило для самок, причем стабильность означает взаимную стабильность, при которой каждое данное правило стабильно при выполнении его самого и другого правила. Если нам удастся найти такую пару эволюционно стабильных правил, то мы сможем изучать их, чтобы понять, какой будет жизнь в сообществе, которое состоит из самцов и самок, действующих по этим правилам. А точнее, будет ли этот мир соответствовать принципу гандикапа, выдвинутому Захави?

Грейфен поставил перед собой задачу найти такую взаимно стабильную пару правил. Если бы я взялся за эту задачу, мне, пожалуй, пришлось бы долго и упорно заниматься трудоемким моделированием на компьютере. Я бы заложил в компьютер данные по ряду самцов, различающихся по тем правилам, в соответствии с которыми они соотносят качество с рекламой. Я заложил бы в него также данные по ряду самок, различающихся по тем правилам, с помощью которых они выбирают самцов на основании уровней рекламы, применяемой последними. Затем я дал бы возможность самцам и самкам «носиться» в компьютере, сталкиваясь друг с другом, спариваясь в тех случаях, когда самцы удовлетворяют критериям выбора самок, и передавая свои самцовые и самочьи правила своим сыновьям и дочерям. Конечно, при этом индивидуумы выживали бы или погибали в зависимости от унаследованного ими «качества». По мере смены одного поколения другим изменяющиеся судьбы каждого из самцовых и каждого из самочьих правил отражались бы в виде изменений их частот в популяции. Время от времени я бы заглядывал в компьютер, чтобы посмотреть, не образовалась ли там какая-нибудь стабильная смесь.

Этот метод в принципе должен работать, но при практическом его применении возникают трудности. К счастью, математики могут получить те же результаты, какие дает моделирование, составив несколько уравнений и решив их. Именно это и сделал Грейфен. Я не стану приводить здесь его математические выкладки или его дальнейшие допущения, а прямо перейду к выводам. Ему в самом деле удалось найти пару эволюционно стабильных правил.

Итак, переходим к главному вопросу. Создает ли грейфеновская ЭСС такой мир, который Захави признал бы как мир гандикапов и честности? Ответом будет «да». Грейфен установил, что существование эволюционно стабильного мира, сочетающего в себе следующие свойства, постулированные Захави, действительно возможно.

1. Несмотря на возможность свободного стратегического выбора уровня рекламы, самцы выбирают уровень, в точности соответствующий их истинному качеству, если даже при этом обнаруживается, что это качество низкое. Иными словами, при ЭСС самцы ведут себя честно.

2. Несмотря на возможность свободного стратегического выбора, при ответе на рекламу самцов самки в конечном итоге выбирают стратегию «Доверяй самцу». При ЭСС самки оправданно «доверчивы».

3. Реклама обходится дорого. Иными словами, если бы можно было как-то пренебречь эффектами качества и привлекательности, то самцу было бы выгоднее не прибегать к рекламе (сберегая тем самым энергию или оказываясь менее заметным для хищников). Реклама не просто обходится дорого — данная система рекламы выбирается именно из-за ее высокой цены. Она выбирается именно потому, что на самом деле приводит к снижению успеха того, кто ее применяет — при прочих равных условиях.

4. Высококачественным самцам реклама обходится дороже. При одном и том же уровне рекламы для тщедушного самца риск возрастает больше, чем для сильного. Низкокачественные самцы подвергаются большему риску при дорогостоящей рекламе, чем высококачественные.

Эти свойства, особенно третье, полностью соответствуют идеям Захави. Представленная Грейфеном картина, демонстрирующая их эволюционную стабильность в достаточно правдоподобных условиях, кажется очень убедительной. Но столь же убедительны доводы критиков Захави (влияние которых сказалось на первом издании этой книги), считавших, что идеи Захави не имеют отношения к эволюции. Мы не должны соглашаться с заключениями Грейфена до тех пор, пока не поймем, в чем ошибались его прежние критики (если они в чем-то ошибались). Какие принятые ими допущения привели их к иному заключению? Отчасти дело, по-видимому, в том, что они не предоставляли своим гипотетическим животным возможность выбора из непрерывного ряда стратегий. Это часто сводилось к тому, что сформулированные в словесной форме идеи Захави его критики интерпретировали в соответствии с тем или другим из трех первых подходов, предложенных Грейфеном: квалифицирующий гандикап, выявляющий гандикап или условный гандикап. Они совершенно не касались четвертого подхода-гандикапа стратегического выбора. В результате они либо совершенно не могли использовать принцип гандикапа, либо он у них работал лишь в особых математически абстрактных условиях, которые не позволяют ощутить в полной мере парадоксальность идеи Захави. Кроме того, существенная черта подхода к интерпретации принципа гандикапа на основе стратегического выбора состоит в том, что при ЭСС как высоко-, так и низкокачественные индивидуумы применяют одну и ту же стратегию: «Рекламируй честно».

Создатели более ранних моделей исходили из допущения, что высоко- и низкокачественные самцы прибегают к разным стратегиям, а поэтому в процессе эволюции у них возникли различные рекламы. Грейфен, напротив, допускает, что при ЭСС рекламирующие себя высоко- и низкокачественные самцы используют одну и ту же стратегию, а различия в рекламах появляются в результате того, что различия в их качестве точно передаются правилом сигнализации.

Мы всегда признавали, что сигналы фактически могут оказаться гандикапами. Мы понимали, что в процессе эволюции, особенно в результате полового отбора, могут возникнуть экстремальные гандикапы, несмотря на то, что это гандикапы. Частью теории Захави, против которой мы возражали, была идея о том, что отбор может благоприятствовать тем или иным сигналам как раз потому, что они оказываются гандикапами для тех, кто ими пользуется. Очевидно, Ален Грейфен реабилитирует именно этот момент.

Если Грейфен прав, а я думаю, что он прав, то этот результат имеет существенное значение для всего изучения сигналов животных. Возможно, что нам даже придется коренным образом изменить наши взгляды на эволюцию поведения и на многие проблемы, обсуждаемые в этой книге. Сексуальная реклама — это реклама лишь одного рода. Теория Захави — Грейфена, если она верна, перевернет вверх дном представления биологов о взаимоотношениях между соперниками, принадлежащими к одному полу, между родителями и потомками, между врагами, принадлежащими к разным видам. Эта перспектива меня несколько обеспокоила, поскольку она означает, что теперь нельзя будет с позиций здравого смысла отбрасывать почти безумные теории. Если мы видим, что животное действительно ведет себя глупо, например при виде льва становится на голову, вместо того чтобы спасаться бегством, то возможно, что оно делает это, чтобы покрасоваться перед самкой. Возможно даже, что оно рисуется перед львом: «Я такое высококачественное животное, что пытаясь поймать меня, ты просто зря теряешь время» (см. с. 161).

Однако каким бы безумством я ни считал то или иное поведение, естественный отбор может придерживаться другого мнения. Животное может кувыркаться и прыгать перед сворой пускающих слюни хищников, если риск, которому оно при этом подвергается, повышает действенность его рекламы сильнее, чем угрожает ему самому. Именно опасность такого поведения придает силу этой демонстрации. Конечно, естественный отбор не будет благоприятствовать бесконечно большой опасности. Эксгибиционизм, граничащий с безрассудством, неизбежно будет наказан. Рискованная или дорогостоящая демонстрация может показаться нам безрассудной. Но это, в сущности, нас не касается. Только естественный отбор имеет право судить об этом.

>

Глава 10. Почеши мне спину, и я тебя оседлаю

id="note10.1">

[10.1]

...по-видимому [эволюция стерильных рабочих] смогла реализоваться только у общественных насекомых.

Так мы все полагали. Но при этом мы не принимали во внимание голого землекопа (Heterocephalus glaber). Голые землекопы — это мелкие, почти слепые и почти лишенные волосяного покрова грызуны, живущие большими подземными колониями в засушливых областях Кении, Сомали и Эфиопии. Это настоящие «общественные насекомые» из мира млекопитающих. Первые исследования этих грызунов, проведенные Дженнифер Джарвис (Jennifer Jarvis) на содержавшихся в неволе колониях в Кейптаунском университете, теперь расширены благодаря полевым наблюдениям Роберта Бретта (Robert Brett) в Кении. Дальнейшее изучение колоний, содержащихся в неволе, проводят в настоящее время в США Ричард Александер (Richard Alexander) и Пол Шерман (Paul Sherman). Эти четыре исследователя обещали выпустить совместную книгу и я, в числе прочих, ожидаю ее с большим интересом. А пока мое изложение основывается на нескольких опубликованных статьях и на научных докладах, сделанных П. Шерманом и Р. Бреттом. Кроме того, мне посчастливилось ознакомиться с колонией голых землекопов в Лондонском зоопарке, которую мне показал куратор отдела млекопитающих Брайан Бертрам (Brian Bertram).

Голые землекопы живут в обширных и сильно разветвленных подземных туннелях. Обычно колония состоит из 70–80 индивидуумов, но иногда это число возрастает до нескольких сотен. Общая длина туннелей, занимаемых одной колонией, может достигать 3 и даже 5 км, а ежегодные выбросы земли — 3–4 тонны. Рытье туннеля производится коллективно. Рабочий, идущий впереди, вгрызается в почву зубами, а затем вырытая почва передается назад по живому конвейеру — извивающейся цепочке из 5–6 маленьких розоватых животных. Время от времени переднего рабочего подменяет один из задних.

В каждой колонии размножается только одна самка, которая делает это на протяжении нескольких лет. Джарвис, используя, по-моему вполне законно, термины, принятые по отношению к общественным насекомым, называет ее маткой. Матка спаривается только с двумя или тремя самцами. Все остальные индивидуумы, как самки, так и самцы, никогда не спариваются, т. е. ведут себя подобно рабочим у насекомых. И, как у многих видов общественных насекомых, если удалить из колонии матку, несколько самок, которые прежде были стерильными, начинают переходить в фертильное состояние, а затем вступают в борьбу за место матки.

Стерильных индивидуумов землекопа называют «рабочими», и это опять-таки достаточно обоснованно. Рабочие могут принадлежать и к одному, и к другому полу, как у термитов (но не у муравьев, пчел и ос, у которых рабочие — это всегда самки). Функции, выполняемые землекопами, зависят от их размеров. Мелкие рабочие, которых Джарвис называет «постоянными рабочими», роют и выбрасывают почву, кормят детенышей и, очевидно, освобождают матку от всех забот, с тем чтобы она могла сосредоточить все свое внимание на деторождении. У землекопа число детенышей в помете больше, чем бывает обычно у грызунов таких размеров, что опять-таки заставляет вспомнить матку у общественных насекомых. Самые крупные стерильные индивидуумы, по-видимому, главным образом едят и спят, тогда как поведение рабочих средних размеров носит промежуточный характер. Касты голых землекопов, подобно кастам пчел, постепенно переходят одна в другую, и между ними нет четкого разграничения, наблюдаемого у муравьев.

Джарвис вначале называла самых крупных стерильных индивидуумов «нерабочими». Действительно ли они ничего не делают? Имеются данные, полученные как в лабораториях, так и в результате полевых наблюдений, позволяющие считать, что эти индивидуумы выступают в роли солдат, защищающих колонию в случае опасности; главные хищники, угрожающие землекопам, — это змеи. Возможно также, что крупные стерильные индивидуумы служат «пищевыми бочками», аналогичными «медовым бочкам» муравьев (см. с. 161). Голые землекопы — гомокапрофаги (вежливый способ объяснить, что они поедают испражнения друг друга; правда, в их диету входит и другая пища, иначе это противоречило бы законам природы). Быть может, крупные индивидуумы выполняют важную функцию, накапливая в своем теле экскременты в периоды, когда пища имеется в избытке, и выступая в роли склада аварийного запаса, когда пищи мало.

Для меня самая загадочная особенность голых землекопов состоит в том, что хотя они во многом сходны с общественными насекомыми, у них нет касты, эквивалентной молодым крылатым репродуктивным индивидуумам муравьев и термитов. У них, конечно, есть репродуктивные индивидуумы, но они не начинают свой жизненный путь, взлетая в воздух и распространяя свои гены в новые области. Насколько известно, колонии голых землекопов просто растут вширь по периферии, так что система подземных туннелей охватывает все большую площадь. По-видимому, эти колонии не отторгают от себя индивидуумов, расселяющихся на большие расстояния, — эквивалент крылатых репродуктивных индивидуумов. Это так удивительно для моих дарвинистских представлений, что я не могу удержаться от соблазна высказать некоторые гипотезы. Я интуитивно чувствую, что в один прекрасный день мы обнаружим у землекопов фазу расселения, которая до сих пор по какой-то причине оставалась незамеченной. Вряд ли можно надеяться на то, что у расселяющихся индивидуумов в буквальном смысле отрастут крылья! Но они могут иметь те или иные приспособления, позволяющие им жить над, а не под землей. Например, их тело может быть не голым, а покрытым шерстью. Голые землекопы неспособны регулировать температуру своего тела так, как это делают все другие млекопитающие; они больше похожи на «холоднокровных» рептилий. Может быть, они регулируют температуру сообща — еще одно сходство с термитами и пчелами. А не используют ли они всем известное постоянство температуры в хорошем погребе? Во всяком случае, вполне возможно, что мои гипотетические расселяющиеся индивидуумы, в отличие от подземных рабочих, «теплокровны», как это обычно для млекопитающих. Можно ли представить себе, что какой-то из уже известных грызунов с нормальным шерстным покровом, которого до сих пор относили к совершенно другому виду, окажется потерянной кастой голого землекопа?

Ведь прецеденты такого рода известны. Например, саранча. Саранча принадлежит к прямокрылым и обычно ведет одиночный, скрытный и таинственный образ жизни, типичный для этих насекомых. Но при некоторых особых условиях саранча изменяется коренным — и ужасным — образом. Насекомые теряют свою покровительственную окраску, покрываясь яркими полосками. Это может показаться почти предупреждением, и притом отнюдь не пустым, ибо поведение саранчи также изменяется. Отказавшись от одиночного образа жизни, саранча сбивается в стаи, что имеет ужасающие последствия. Начиная с библейских времен и по сегодняшний день ни одно животное не вызывало у людей такого страха, как саранча, наносящая колоссальный вред их благосостоянию. Миллионные скопища этого насекомого налетают на посевы, оставляя после себя опустошенную полосу шириной в десятки километров; иногда стая саранчи перемещается на несколько сот километров в день, ежедневно пожирая по 2000 тонн сельскохозяйственных культур и оставляя за собой голод и разорение. И тут мы подошли к возможной аналогии с голыми землекопами. Различие между одиночным индивидуумом и его стадной ипостасью столь же велико, как различие между двумя кастами муравьев. Кроме того, до 1921 г.да кобылок-Джекилей и их саранчевых Хайдов систематики относили к разным видам, что в точности соответствует нашей высказанной выше гипотезе о «потерянной касте» голых землекопов.

Но, Господи, кажется не слишком правдоподобным, что маммологи могли оставаться в таком неведении вплоть до сегодняшнего дня. Между прочим, я должен сказать, что обычных, нетрансформированных голых землекопов иногда можно увидеть на поверхности земли и они, возможно, способны перемещаться на гораздо большие расстояния, чем это принято считать. Но прежде чем покончить с гипотезой «трансформированного репродуктивного индивидуума», рассмотрим еще одну возможность, подсказываемую аналогией с саранчой. Быть может, голые землекопы в самом деле продуцируют трансформированных репродуктивных особей, но только при определенных условиях — условиях, не возникавших за последние десятилетия. В Африке и на Среднем Востоке нашествия саранчи все еще угрожают сельскому хозяйству, как в библейские времена. Однако в Северной Америке дело обстоит иначе. У некоторых видов прямокрылых потенциально возможно превращение одиночной фазы в стадную. Но, по-видимому из-за отсутствия соответствующих условий, в этом веке в Северной Америке не произошло ни одного нашествия саранчи (хотя регулярно возникают вспышки численности совершенно другого насекомого-вредителя — цикад, которых в быту американцы ошибочно называют «саранчой»). Тем не менее, если бы в Америке в настоящее время произошло нашествие настоящей саранчи, это не вызвало бы особого удивления: вулкан не потух, он только дремлет. Если бы, однако, мы не вели записей о такого рода событиях в других частях земного шара, то это могло бы оказаться неприятным сюрпризом, потому что в роли вредителя выступили бы всего лишь всем известные одиночные невинные кобылки. А что, если голым землекопам, подобно американским кобылкам, заранее предначертано произвести другую, расселяющуюся касту, но лишь при соответствующих условиях, которые по какой-то причине не реализовались в нынешнем веке? В XIX в. Восточная Африка могла подвергаться нашествиям покрытых шерстью землекопов, мигрировавших по поверхности земли, но никаких сведений об этом до нас не дошло. Или, быть может, такие сведения содержатся в легендах и сагах местных племен.

id="note10.2">

[10.2]

...что у перепончатокрылых самка связана со своими сестрами более тесным родством, чем со своими потомками…

Незабываемая оригинальность гамильтоновской гипотезы о «3/4-ном коэффициенте родства» в особом случае Hymenoptera парадоксальным образом поколебала репутацию его более общей и фундаментальной теории. История с гаплодиплоидным 3/4-ным коэффициентом родства достаточно проста, чтобы каждый, приложив небольшое усилие, мог ее понять и захотел рассказать о ней другим. Это хороший «мим». Если вы узнаете о Гамильтоне не в результате чтения его работ, а, скажем, из разговора в пивной, то весьма велика вероятность, что вы не услышите ни о чем другом, кроме как о гаплодиплоидии. В наши дни любой учебник биологии, как бы коротко в нем ни излагался кин-отбор, почти вынужден посвятить отдельный параграф «3/4-ному коэффициенту родства». Коллега, которого теперь считают одним из крупнейших в мире специалистов по общественному поведению крупных млекопитающих, признался мне, что долгие годы он рассматривал гамильтоновскую теорию кин-отбора как гипотезу о 3/4-ном коэффициенте родства и ничего более! Из всего этого следует, что если какие-либо новые факты заставят нас усомниться в значении гипотезы о 3/4-ном коэффициенте родства, то люди воспримут их как доводы против всей теории кин-отбора. Эту ситуацию можно пояснить следующим образом. Допустим, что некий композитор написал большую и чрезвычайно сложную симфонию, где-то в середину которой он вставил одну мелодию, запоминающуюся так легко, что все стали насвистывать ее на улицах. Симфонию начинают отождествлять с одной этой мелодией, и если затем людям она разонравится, то им будет казаться, что им не нравится вся симфония.

Возьмем, например, весьма полезную статью Линды Гамлин (Linda Gamlin) о голых землекопах, опубликованную недавно в журнале New Scientist. Статье серьезно повредило сделанное в ней замечание, косвенно указывающее на то, что голые землекопы и термиты не укладываются в гипотезу Гамильтона просто потому, что они гаплодиплоидны! Трудно поверить, что автор вообще знакома с двумя классическими работами Гамильтона, где гаплодиплоидии отведено всего четыре из пятидесяти страниц. Она, очевидно, доверилась вторичным источникам (надеюсь, что это не был «Эгоистичный ген»).

Другой пример касается солдат у тлей, описанных в примечаниях к гл. 6. Там я объяснял, что поскольку тли образуют клоны идентичных близнецов, следует ожидать у них проявлений альтруистичного самопожертвования. Гамильтон отметил это в 1964 г. и приложил некоторые усилия, чтобы объяснить один затруднительный факт: насколько было известно в то время, клональные животные не проявляли никакой особой склонности к альтруистичному поведению. Обнаружение солдат у тлей, когда это произошло, как нельзя лучше соответствовало теории Гамильтона. Тем не менее оригинальная работа, возвестившая об этом открытии, написана так, будто это открытие создает затруднение для теории Гамильтона, поскольку тли не гаплодиплоидны! Милая ирония.

Эту тему можно продолжить, обратившись к термитам, поведение которых также, как часто считают, не укладывается в рамки теории Гамильтона: дело в том, что именно Гамильтон в 1972 г. выдвинул одну из самых остроумных теорий о причинах эволюции у термитов общественного образа жизни, которую можно считать удачной аналогией гаплодиплоидной гипотезы. Эту теорию — теорию циклического инбридинга — обычно приписывают С. Бартцу (S. Bartz), который разработал ее спустя семь лет после того, как ее впервые опубликовал Гамильтон. Как это характерно для Гамильтона, сам он позабыл, что он первым подумал о «теории Бартца», и мне пришлось сунуть ему под нос его собственную работу, для того, чтобы он в это поверил! Не касаясь проблем приоритета, сама эта теория очень интересна, и мне жаль, что я не обсуждал ее в первом издании. Теперь я исправлю эту ошибку.

Я сказал, что эта теория была разумным аналогом гаплодиплоидной гипотезы. Я имел в виду следующее. Важная черта гаплодиплоидной теории с точки зрения эволюции общественного образа жизни состоит в том, что индивидуум может быть генетически ближе к своему сибсу (т. е. сестре или брату), чем к своим потомкам. Это предрасполагает самку оставаться в родительском гнезде и выращивать своих сибсов, а не покидать это гнездо, с тем чтобы рожать и выращивать собственных потомков. Гамильтона заинтересовало, почему и у термитов сибсы могут быть генетически ближе друг к другу, чем родители к потомкам. Ключ к этому дает инбридинг. Потомство, получающееся в результате спаривания животных со своими сибсами, генетически более однородно. Белые крысы, относящиеся к одной лабораторной линии, генетически эквивалентны идентичным близнецам. Это объясняется тем, что они получены в результате длинного ряда спаривании между братьями и сестрами. Пользуясь специальной терминологией, их геномы становятся высокогомозиготными: почти в каждом из их генетических локусов оба гена идентичны; они идентичны также генам, находящимся в этом локусе у всех других индивидуумов данной линии. В природе нечасто можно встретить длинные ряды кровосмесительных скрещиваний; существует, однако, одно важное исключение — термиты!

У термитов гнездо обычно закладывает царская пара-царь и царица, которые затем спариваются только друг с другом, пока один из них не умирает. Тогда его место занимает один из их потомков, который, совершая кровосмешение, спаривается с оставшимся в живых родителем. В случае смерти обоих членов первоначальной царской пары их замещает пара брат-сестра, что также связано с кровосмешением. И так далее. Пока колония достигает зрелости, она, по всей вероятности, успевает потерять по нескольку царей и цариц, и спустя несколько лет все потомство становится высокоинбредным, подобно лабораторным крысам. Средняя гомозиготность и средний коэффициент родства в гнезде термитов с годами ползет все выше и выше, а царей и цариц последовательно замещают их потомки или их сибсы. Но это лишь первый шаг в рассуждениях Гамильтона. Самая оригинальная их часть впереди.

Конечный продукт любой семьи общественных насекомых — новые крылатые репродуктивные особи, которые вылетают из родительского гнезда, спариваются и основывают новую семью. Есть шансы, что спаривания между новыми молодыми царями и царицами окажутся некровосмесительными. Более того, создается впечатление, что существуют специальные синхронизирующие «соглашения», в соответствии с которыми во всех имеющихся в данной местности гнездах термитов крылатые репродуктивные особи рождаются в один и тот же день, вероятно для того, чтобы способствовать аутбридингу. Рассмотрим теперь генетические последствия спаривания молодого царя из семьи А и молодой царицы из семьи B. Оба они — эквиваленты инбредных лабораторных крыс. Но поскольку они возникли в результате различных независимых программ кровосмесительных скрещиваний, они генетически различны. Они подобны инбредным белым крысам, принадлежащим к разным лабораторным линиям. Потомки от скрещиваний между ними будут высоко, но при этом единообразно гетерозиготны. Гетерозиготными называют индивидуумов, у которых во многих локусах находятся два разных гена. Единообразно гетерозиготные означает, что почти все потомки гетерозиготны по одним и тем же локусам. Они генетически почти идентичны своим сибсам, но в то же время высокогетерозиготны.

Пойдем дальше. Новая семья с основавшей ее царской парой разрастается. В нее входит множество идентично гетерозиготных молодых термитов. Подумайте, что же произойдет, когда один или оба члена царской пары основателей умрут? Прежний кровосмесительный цикл начнется сначала, с весьма существенными последствиями. Первое поколение, родившееся от кровосмесительного спаривания, будет гораздо более жизнеспособным, чем предыдущее поколение, независимо от того, произошло ли оно от пары брат-сестра, отец-дочь или мать-сын. Принцип этот общий для всех пар, однако проще рассмотреть случай спаривания брата с сестрой. Если и брат, и сестра единообразно гетерозиготны, то их потомки будут представлять собой высоковариабельную мешанину генетических рекомбинаций. Это вытекает из элементарной менделевской генетики и относится в принципе ко всем животным и растениям, а не только к термитам. Если единообразно гетерозиготных индивидуумов скрещивать либо друг с другом, либо с одной из гомозиготных родительских линий, то возникает полный хаос (в генетическом смысле)! Причину можно отыскать в любом начальном учебнике генетики, и я не буду на этом останавливаться. В данном контексте важное следствие заключается в том, что на этой стадии развития термитной семьи индивидуум генетически ближе к своим сибсам, чем к своим потенциальным потомкам. И это, как мы видели в случае гаплодиплоидных перепончатокрылых, представляется вероятным предварительным условием для эволюции альтруистически стерильных каст рабочих.

Однако даже в тех случаях, когда нет особой причины ожидать, что индивидуумы будут ближе к своим сибсам, чем к своим потомкам, нередко имеются веские доводы в пользу того, что индивидуумы будут так же близки к своим сибсам, как и к своим потомкам. Единственное условие, необходимое для того, чтобы это оказалось правдой, — известная степень моногамии. Некоторое удивление вызывает, с точки зрения Гамильтона, отсутствие других видов, у которых стерильные рабочие ухаживали бы за своими младшими братьями и сестрами. Что на самом деле широко распространено, как мы убеждаемся все больше и больше, так это своего рода разбавленный вариант феномена стерильного рабочего, «помогающего в гнезде». У многих видов птиц и млекопитающих молодые половозрелые индивидуумы, прежде чем уйти от родителей и завести собственную семью, остаются с ними на один или два сезона размножения, помогая выращивать своих младших братьев и сестер. Если допустить, что выгадывающие от этого индивидуумы — их родные (а не единокровные или единоутробные) братья и сестры, то каждый грамм пищи, вложенный в сибса, приносит с генетической точки зрения такой же доход, как если бы он был вложен в собственных детей. Однако это лишь при прочих равных условиях. Для того чтобы объяснить, почему помощь, оказываемая в гнезде старшими потомками родителям, наблюдается у некоторых видов, отсутствуя у других, нам надо рассмотреть возможные неравенства условий.

Возьмем, например, какой-то вид птиц, гнездящихся в дуплистых деревьях. Такие деревья представляют большую ценность, так как число их ограничено. Вообразите себя в роли молодой половозрелой птицы. Если ваши родители живы, то они, по всей вероятности, владеют одним из немногих имеющихся в округе дупел (они непременно должны были владеть каким-то дуплом по крайней мере до недавнего времени, так как иначе вас не было бы на свете). Итак, вы, вероятно, живете в дупле, этом процветающем инкубаторе, а вновь появляющиеся в нем обитатели — ваши родные братья и сестры, генетически столь же близкие вам, как и ваши собственные потомки, которые могут появиться в будущем. Если вы покидаете родительское гнездо и собираетесь жить самостоятельно, ваши шансы найти дуплистое дерево невелики. Даже если вам это удастся, потомки, которых вы вырастите, будут вам генетически не ближе, чем ваши братья и сестры. Некое данное количество усилий, вложенное в гнездо ваших родителей, представляет большую ценность, чем то же самое количество усилий, затраченное на попытку устроиться самостоятельно. В таком случае эти условия могут благоприятствовать заботе о сибсах — «оказанию помощи в гнезде».

Все это так, но тем не менее нельзя забывать, что некоторые индивидуумы — или все индивидуумы в такое-то время — должны будут покинуть родительское гнездо и искать новое дупло или то, что соответствует дуплу для их вида. Пользуясь введенной в гл. 7 терминологией, кто-то должен рожать на свет потомков, иначе не о ком будет заботиться! Дело здесь не в том, что «иначе вид обречен на вымирание». Просто в любой популяции, где преобладают гены чистой заботы о потомстве, гены, детерминирующие рождение потомков, приобретут преимущество. У общественных насекомых функция деторождения лежит на матках и самцах. Это они отправляются на поиски новых «дуплистых деревьев» и именно поэтому они всегда крылатые, даже у муравьев, рабочие которых лишены крыльев. Эти репродуктивные индивидуумы специализированы, сохраняя свою специализацию на всю жизнь. Птицы и млекопитающие, помогающие в гнезде, делают это иначе. Каждый индивидуум проводит часть своей жизни (обычно один или два сезона после достижения половозрелости) в роли «рабочего», помогая выращивать младших братьев и сестер, тогда как остальную часть жизни он стремится быть «репродуктивным».

А как же голые землекопы, описанные в предыдущем примечании? Они служат идеальным примером принципа действенной заботы, или «дуплистого дерева», хотя в данном случае дуплистое дерево как таковое отсутствует. Ключом к пониманию их поведения служит, вероятно, пятнистое распределение источников их пищи под саванной. Голые землекопы питаются главным образом подземными клубнями. Эти клубни могут быть очень крупными и лежать глубоко в земле. У одного растения вес одного клубня может превышать вес 1000 землекопов, и если им удастся найти такой клубень, его может хватить всей колонии на месяцы или даже годы. Проблема состоит в том, чтобы найти эти клубни, так как они разбросаны по саванне крайне неравномерно. Для голых землекопов найти источник пищи трудно, но если его удается найти, то все трудности окупаются. Роберт Бретт рассчитал, что одному землекопу, работающему в одиночку, чтобы найти всего один клубень, пришлось бы грызть землю так долго, что он совершенно истер бы себе зубы. Обширная же колония, непрерывно и тщательно обследующая свои многокилометровые тоннели, очень эффективно добывает клубни. Каждому индивидууму экономически гораздо выгоднее быть частью артели землекопов.

Таким образом, обширная система тоннелей, обслуживаемая десятками скооперировавшихся рабочих, — это действующее предприятие, подобное нашему гипотетическому «дуплистому Дереву», только в еще большей степени! Исходя из того, что вы живете в процветающем обобществленном лабиринте и что ваша мать всё еще продолжает производить в нем ваших родных братьев и сестер, побуждение покинуть его и начать создание собственной семьи безусловно станет очень слабым. Даже если некоторые из рождающихся потомков являются только полусибсами, то довод о «действующем предприятии» все еще может оставаться достаточно мощным, чтобы удерживать молодых половозрелых индивидуумов в родительском доме.

id="note10.3">

[10.3]

Их результаты достаточно близки к соотношению 3 самки:1 самец, предсказанному теорией…

Ричард Александер и Пол Шерман опубликовали статью, в которой подвергли критике методы, примененные Трайверсом и Хейром, и сделанные ими заключения. Они соглашаются с тем, что сдвиг соотношения полов в пользу самок обычен для общественных насекомых, но возражают против того, что это соотношение близко к 3:1. Они предпочитают другое объяснение сдвига соотношения в пользу самок, которое, подобно объяснению Трайверса и Хейра, впервые предложил Гамильтон. Я нахожу возражения Александера и Шермана вполне убедительными, но должен признаться, что, как мне кажется, такая прекрасная работа, как исследование Трайверса и Хейра, не может быть целиком ошибочной.

Ален Грейфен указал мне на другую, более тревожную проблему, связанную с рассмотрением соотношения полов у перепончатокрылых в первом издании этой книги. Я пояснил его точку зрения в «Расширенном фенотипе» (с. 75–76), а здесь ограничусь краткой выдержкой: Потенциальному рабочему все еще безразлично, выращивать ли своих сибсов или собственных потомков при любом мыслимом соотношении полов в популяции. Допустим, что соотношение полов в данной популяции смещено в пользу самок; допустим даже, что оно соответствует предсказанному Трайверсом и Хейром 3:1. Поскольку рабочая особь связана со своей сестрой более близким родством, чем со своим братом или со своим потомком любого пола, может показаться, что при таком сдвинутом в сторону самок соотношении полов она «предпочтет» заботиться о своих сибсах, а не о потомках: ведь делая выбор в пользу сибсов, она приобретает самое ценное — сестер (плюс несколько сравнительно бесполезных братьев). Однако в этих рассуждениях мы пренебрегаем относительно высокой репродуктивной ценностью, которой обладают в такой популяции самцы ввиду их немногочисленности. Рабочий может быть связан с каждым из своих братьев не очень тесным родством, но если в популяции в целом самцов мало, то каждый из этих братьев соответственно с большой вероятностью может оказаться предком будущих поколений.

id="note10.4">

[10.4]

Если данная популяция достигает такой ЭСС, которая ведет ее к вымиранию, то она вымирает; что ж, тем хуже для нее.

Знаменитый философ, покойный Дж. Маки (J. L. Mackie) привлек внимание к одному интересному следствию, вытекающему из того, что популяции моих «Плутов» и «Недоброжелателей» могут быть одновременно стабильными. Может оказаться «тем хуже для нее», если популяция принимает ЭСС, которая ведет ее к вымиранию; Маки добавляет к этому, что при некоторых видах ЭСС вероятность вымирания популяции больше, чем при других. В данном частном примере и стратегия плута, и стратегия недоброжелателя эволюционно стабильны: популяция может стабилизироваться на равновесии как для одной, так и для другой. По мнению Маки, популяции, стабилизировавшиеся на равновесии для плута, с большей вероятностью придут в дальнейшем к вымиранию. Возможно поэтому, что существует некий отбор более высокого уровня, «межЭСС-отбор», благоприятствующий реципрокному альтруизму. На этой основе можно разработать аргументацию в пользу своего рода группового отбора, которая, в отличие от большинства теорий группового отбора, могла бы оказаться приемлемой. Я изложил эту аргументацию в своей статье «В защиту эгоистичного гена».

>

Глава 11. В защиту эгоистичного гена

id="note11.1">

[11.1]

Я бы сделал ставку на один фундаментальный закон… все живое эволюционирует в результате дифференциального выживания реплицирующихся единиц.

Мое убеждение в том, что все живое в любом уголке Вселенной может эволюционировать лишь теми способами, которые описаны Дарвином, теперь изложено и подкреплено полнее в моей статье «Универсальный дарвинизм» и в последней главе «Слепого часовщика». Я показал, что все когда-либо предлагавшиеся альтернативы дарвинизму в принципе не в состоянии объяснить организованную сложность жизни. Это общий довод, он не опирается ни на какие конкретные факты о жизни, какой мы ее знаем. Как таковой, он подвергся критике со стороны тех ученых, которые достаточно прозаичны, чтобы считать, что единственный путь к научным открытиям лежит через изнурительную работу с горячей пробиркой (или холодные забрызганные грязью сапоги). Один критик жаловался, что мои доводы носят «философский» характер, как будто этого достаточно для их осуждения. Какими бы они ни были, остается фактом, что ни он, ни кто другой не нашли никаких слабых мест в том, что я сказал. И «в принципе» аргументация, подобная моей, не только имеет отношение к реальному миру, но и может оказаться более убедительной, чем доводы, основанные на результатах конкретных исследований. Мои рассуждения, если они верны, сообщают нам нечто важное о жизни в любом уголке Вселенной. А лабораторные и полевые исследования могут дать нам сведения только о той жизни, какую мы можем наблюдать здесь, на Земле.

id="note11.2">

[11.2]

Мим.

Слово мим становится, по-видимому, хорошим мимом. Оно теперь используется довольно широко, а в 1988 г. его внесли в официальный перечень слов, рассматриваемых на предмет включения в будущие издания Оксфордского словаря английского языка. Это заставляет меня снова повторить, что мои покушения на человеческую культуру чрезвычайно скромны и сводятся практически к нулю. Мои истинные стремления, а они, надо признаться, велики, направлены совсем в другую сторону. Я хочу потребовать признания почти безграничной силы за чуть неточно самореплицирующимися единицами, если уж они возникли где-то во Вселенной. Причина их силы в том, что они имеют тенденцию становиться основой дарвиновского отбора, который, если число поколений достаточно велико, накапливая изменения, создает системы чрезвычайной сложности. Я считаю, что при наличии соответствующих условий репликаторы автоматически собираются вместе, образуя системы, или машины, в которых они путешествуют по свету и трудятся во имя своей непрерывной репликации. В первых десяти главах «Эгоистичного гена» внимание было сосредоточено исключительно на репликаторах одного типа — на генах. Обсуждая мимы в последней главе [первого издания], я старался обосновать свою точку зрения применительно к репликаторам вообще и показать, что гены — не единственные представители этой важной категории. Я не уверен, что человеческая культура в самом деле обладает всем необходимым для того, чтобы привести в действие какую-то форму дарвинизма. Но в любом случае этот вопрос играет в моих построениях лишь вспомогательную роль. гл. 11 достигнет своей цели, если читатель, закрывая книгу, почувствует, что молекулы ДНК — не единственные структуры, способные послужить основой для дарвиновской эволюции. Моей целью было поставить ген на место, а не создавать великую теорию человеческой культуры.

id="note11.3">

[11.3]

...мимы следует рассматривать как живые структуры не только в метафорическом, но и в техническом смысле.

Самореплицирующийся кусочек ДНК представляет собой, так сказать, материальное воплощение мима (hardware). Каждый такой кусочек имеет особую структуру, отличную от структуры соперников — других кусочков ДНК. Если мимы головного мозга аналогичны генам, то они должны представлять собой самореплицирующиеся мозговые структуры — реальные схемы, состоящие из проводов, переключателей и т. п., которые воссоздаются в одном мозгу за другим. Мне всегда было несколько неловко произносить все это вслух, потому что о мозге мы знаем гораздо меньше, чем о генах, и поэтому наши высказывания о возможном строении мозга неизбежно бывают туманными. Так что я почувствовал облегчение, получив недавно очень интересную статью от Хуана Делиуса (Juan Delius) из университета Констанц в Германии. В отличие от меня, Делиус не должен оправдываться, поскольку он — известный специалист по мозгу, тогда как я таковым отнюдь не являюсь. Поэтому я в восторге от того, что у него достало смелости доказать справедливость рассматриваемой здесь идеи, опубликовав подробное описание возможной нейронной структуры мима. Среди других интересных вещей, которые он исследует гораздо более тщательно, чем это делал я, — аналогия между мимами и паразитами, а точнее — между мимами и целым спектром организмов, на одном конце которого находятся вредоносные паразиты, а не другом — неопасные «симбионты». Меня особенно привлекает этот подход ввиду моего интереса к «расширенно-фенотипическим» воздействиям генов паразита на поведение хозяина (см. гл. 13 настоящей книги и в особенности гл. 12 «Расширенного фенотипа»). Кстати сказать, Делиус подчеркивал ясное разделение между мимами и их («фенотипическими») эффектами. И он повторяет вновь и вновь важность коадаптированных мимо-комплексов, в которые мимы отбираются по их взаимной совместимости.

id="note11.4">

[11.4]

«Auldbang Syne» («Старая дружба»).

Пример «Auld Lang Syne», выбранный мной совершенно непреднамеренно, оказался удивительно удачным. Это связано с тем, что почти повсеместно эта песня исполняется с ошибкой — с мутацией. В наши дни припев почти всегда звучит «For the sake of auld lang syne», тогда как Бернс на самом деле написал: «For auld lang syne». Дарвинист, увлеченный идеей мимов, немедленно задумается, чем объясняется «выживаемость» вставленных слов «the sake of». Помните, что нас интересуют не способы, повышающие выживание людей благодаря тому, что они исполнили песню в измененной форме. Мы стараемся понять, почему само это изменение могло оказаться способным выжить в мимофонде. Все выучивают эту песню в детстве не потому, что читают Бернса, а потому, что слышат, как ее поют в сочельник. Вероятно, когда-то все пели ее, произнося только слова, написанные Бернсом. Добавление слов «the sake of», наверное, возникло как редкая мутация. Спрашивается, почему мутация, бывшая вначале редкой, распространилась так коварно, что стала нормой в мимофонде?

Мне кажется, что найти ответ не очень сложно. Свистящее «s» звучит очень назойливо. Церковных певчих специально тренируют, заставляя их произносить все «s» как можно легче, так как иначе вся церковь наполнится шипением от эхо. В большом соборе бормотание священника в алтаре доносится до задних рядов нефа лишь как отдельные свистящие «s». Другое согласное в «sake», т. е. «k», слышится почти столь же отчетливо. Представьте себе, что девятнадцать человек правильно поют «For auld lang syne», а один из какого-то угла комнаты пропел с ошибкой «For the sake of auld lang syne». Ребенок, услышавший эту песню впервые, очень хочет присоединиться к поющим, но не уверен в словах. Хотя почти все поют «For auld lang syne», шипящее «s» и обрубленное «k» застревают в ушах ребенка, и когда дело вновь доходит до припева, он также поет «For the sake of auld lang syne». Мутантный мим занял еще один экипаж. Если среди присутствующих есть другие дети или взрослые, нетвердо знающие слова, то в следующий раз они с большей вероятностью выберут мутантную форму припева. Это вовсе не означает, что они «предпочитают» мутантную форму. Они действительно не знают слов и искренне хотят выучить их. Даже если те, кто твердо сознает свою правоту, орут во весь голос «For auld lang syne» (как это делаю я!), в правильных словах, увы!, нет выразительных согласных, и мутантный вариант, даже если он пропет негромко и робко, расслышать гораздо легче.

Сходное положение сложилось с гимном «Rule Britannia» («Правь, Британия»). Правильный текст второй строки припева — «Britannia, rule the waves» («Британия, правь морями»). Часто, хотя и не всегда, вместо этого поют «Britannia rules the waves» («Британия правит морями»). Здесь настойчиво шипящему «s» мима помогает дополнительный фактор. Поэт (Джеме Томпсон), очевидно, придавал этим словам повелительный оттенок: «Britannia, go out and rule the waves» («Британия, вперед и правь морями») или, возможно, сослагательный «Let Britannia rule the waves» («Пусть Британия правит морями»). Однако при поверхностном восприятии это предложение представляется изъявительным: «Britannia, as a matter of fact, does rule the wave» («Британия в самом деле правит морями»). Таким образом, этот мутантный мим превосходит первоначальную форму по двум отдельным ценностям для выживания: он звучит более убедительно и его легче понять.

Окончательным судьей любой гипотезе должен быть эксперимент. Следует найти возможность преднамеренно ввести шипящий мим в мимофонд при очень низкой частоте, а затем наблюдать, как он распространяется благодаря своей собственной ценности для выживания. А что, если всего несколько человек начнут петь: «Господь спасает нашу милостивую королеву»? («God saves our gracious Queen».)

id="note11.5">

[11.5]

Если данный мим представляет собой научную идею, то его распространение будет зависеть от того, сколь приемлема эта идея для популяции ученых; приблизительную оценку ее выживаемости может дать подсчет ссылок на нее в научных журналах за ряд лет.

Мне совсем не хотелось бы, чтобы это было воспринято так, будто единственным критерием принятия какой-либо научной идеи служит ее «заразительность». Ведь в конечном счете одни научные идеи бывают верны, а другие ошибочны. Их верность или ошибочность можно проверить; их логику можно критически разобрать. Это ведь не шлягеры, не религиозные течения и не прически панков. Тем не менее науке присуща своя социология и своя логика. Некоторые неудачные научные идеи могут широко распространяться, по крайней мере в течение некоторого времени. А некоторые хорошие идеи лежат без движения годами, пока, наконец, за них не ухватятся и они не завладеют воображением ученых.

Прекрасным примером такой спячки с последующим бурным распространением служит судьба одной из главных идей этой книги — гамильтоновской теории кин-отбора. Я счел эту теорию подходящим примером для того, чтобы проверить, можно ли измерять распространение мима путем подсчета цитирований в журналах. В первом издании (с. 90) я заметил, что «две его [Гамильтона] статьи, опубликованные в 1964 г., относятся к числу. самых важных вкладов в социальную этологию среди когда-либо написанных работ, и я никак не мог понять, почему этологи так пренебрегают ими (его имя даже не упоминается в указателях двух главных учебников по этологии, опубликованных в 1970 г.). К счастью, за последнее время появились некоторые признаки пробуждения интереса к его идеям». Я писал это в 1976 г. Попробуем проследить за оживлением интереса к этому миму за последующее десятилетие.

Science Citation Index (Указатель цитирования в научных изданиях) — довольно странное издание, в котором можно найти ссылку на любую опубликованную статью и где сведено в таблицы (по годам) число последующих публикаций, в которых она цитировалась. Назначение «Указателя» — помочь в поисках литературы по той или иной теме. Университетские комиссии, ведающие приемом на работу, используют его как приближенный и легкий (слишком приближенный и слишком легкий) способ сопоставления научных достижений претендентов на данную должность. Подсчитывая число ссылок на работы Гамильтона по годам, начиная с 1964 г., можно приблизительно проследить за проникновением его идей в сознание биологов (рис. 1). На графике явно виден начальный латентный период. Затем в семидесятые годы наблюдается резкое повышение интереса к кин-отбору, начавшееся, по-видимому, между 1973 и 1974 г.дами. Это повышение набирает темпы, достигает пика в 1981 г., после чего число цитирований колеблется вблизи некоторого плато.

Родился мимический миф о том, что быстрое повышение интереса к кин-отбору подстегивалось книгами, выпущенными в 1975 и 1976 г.. График, где резкое повышение приходится на 1974 г., по-видимому, опровергает это. Зато имеющиеся данные можно использовать как довод в пользу совсем другой гипотезы, а именно, что мы здесь имеем дело с одной из тех идей, которые «носились в воздухе», «чье время настало». С этой точки зрения книги середины семидесятых годов скорее симптомы этого повального увлечения, чем его первопричина.

Быть может, мы действительно имеем дело с длительным, медленно начинавшимся, ускоряющимся по экспоненте повальным увлечением, зародившимся гораздо раньше. Один из способов проверить эту простую экспоненциальную гипотезу состоит в построении кумулятивного графика цитирования в логарифмическом масштабе. Любой процесс роста, при котором скорость роста пропорциональна уже достигнутым размерам, называют экспоненциальным. Типичным примером экспоненциального роста служит эпидемия: каждый больной, выдыхая вирус, заражает несколько других людей, а каждый из этих других в свою очередь таким же путем заражает еще нескольких; в результате число жертв увеличивается со все возрастающей скоростью. Характерная особенность экспоненциальной кривой состоит в том, что в логарифмическом масштабе она превращается в прямую. Такие логарифмические кривые обычно бывает удобно строить кумулятивным образом, хотя в этом и нет необходимости. Если мим Гамильтона действительно распространялся подобно набирающей силу эпидемии, то все точки кумулятивного логарифмического графика должны лечь на одну прямую. Так ли это?

График, изображенный на рис. 2, это и есть та прямая, которая представляет собой результат наилучшей в статистическом смысле подгонки ко всем точкам. Заметным резким ростом между 1966 и 1967 г.дами следует, вероятно, пренебречь как несущественным эффектом при малых значениях логарифма, который еще и усиливается логарифмическим масштабом. Для остальной части графика изображенная прямая является неплохим приближением, несмотря на то, что некоторые точки из нее выпадают. Если принять мою экспоненциальную интерпретацию, то мы здесь имеем дело с единичным всплеском интереса, начавшимся в 1967 г. и продолжавшим медленно нарастать до восьмидесятых годов. Отдельные книги и статьи следует рассматривать как симптомы и одновременно причины этого длительного процесса.

Отметим, между прочим, что не следует считать такого рода возрастание чем-то тривиальным в смысле его неизбежности. Любая кумулятивная кривая, конечно, всегда возрастала бы, даже если бы частота цитирования из года в год оставалась постоянной. Но в логарифмическом масштабе она будет возрастать все медленнее, выходя на плато. Верхняя кривая на рис. 3 — это теоретическая кривая, которую мы получили бы в том случае, если бы частота цитирования была из года в год одинаковой (равной фактической средней частоте цитирования работ Гамильтона — примерно 37 в год). Эту выходящую на плато кривую можно непосредственно сравнить с прямой на рис. 2, отражающей реальные данные, из которой видно, что возрастание идет по экспоненте. Перед нами в самом деле случай ускорения возрастания, а не постоянной частоты цитирования.

Кроме того, может появиться соблазнительная мысль, что в экспоненциальном росте есть что-то, если не неизбежное, то по крайней мере такое, чего можно было ожидать. Разве не происходит экспоненциальный рост числа научных публикаций вообще, а тем самым и возможностей для цитирования работ других авторов? Возможно, возрастает по экспоненте и число ученых. Простейший способ показать, что гамильтоновский мим-случай особый, состоит в построении аналогичного графика для каких-нибудь других работ. На рис. 3 представлены также логарифмы кумулятивных частот цитирования трех других работ (которые также оказали большое влияние на первое издание этой книги). Это книга Уильямса «Адаптация и естественный отбор» (Williams, 1966), статья Трайверса (Trivers, 1971) о реципрокном альтруизме и статья Мэйнарда Смита и Прайса (Maynard Smith, Price, 1973), в которой излагается идея об ЭСС. Все три кривые, совершенно очевидно, не являются экспоненциальными на всем временном интервале. Однако и для этих работ частота цитирования по годам далеко не однородна и на некоторых отрезках области определения может быть даже экспоненциальной. Например, график для работы Уильямса, построенный в логарифмическом масштабе, представляет собой приблизительно прямую, начиная примерно от 1970 г.; это позволяет предположить, что влияние этой работы также стало резко возрастать с этого момента.

Я преуменьшил влияние некоторых книг на распространение гамильтоновского мима. Тем не менее к этой небольшой попытке «мимического анализа» можно дать постскриптум, наводящий на размышления. Как и в примерах с «Auld lang syne» и «Rule Britannia», здесь также замешана поучительная мутантная ошибка. Правильное название двух статей, опубликованных Гамильтоном в 1964 г., — «Генетическая эволюция социального поведения». С середины и до конца семидесятых годов в потоке публикаций, в том числе в моих «Социобиологии» и «Эгоистичном гене», эти статьи упоминались под ошибочным названием «Генетическая теория социального поведения». Ион Седжер (Jon Seger) и Пол Харви (Paul Harvey) попытались выявить момент самого первого появления этого мутантного мима, полагая, что он послужит надежным маркером, почти как радиоактивная метка, для того чтобы установить, как этот мим распространялся в научной литературе. Оказалось, что впервые он был использован в авторитетной книге Е. Уилсона «Социобиология», причем были обнаружены некоторые косвенные доказательства этого предполагаемого происхождения.

Как я ни восхищаюсь замечательной книгой Уилсона — я бы хотел, чтобы люди больше читали его книгу и меньше читали о ней, — я всегда был готов ринуться в бой, услышав совершенно ошибочное предположение, что его книга оказала влияние на мою. Все же, поскольку в моей книге также содержится мутантное цитирование — «радиоактивная метка», — дело начало принимать тревожный оборот: создавалось впечатление, что по крайней мере один мим пропутешествовал от Уилсона ко мне! Это не должно было вызвать особого удивления, поскольку «Социобиология» появилась в Англии как раз тогда, когда я заканчивал «Эгоистичный ген», в то самое время, когда я должен был бы трудиться над библиографией. Обширная библиография Уилсона могла бы оказаться даром небес, избавив меня от долгих часов работы в библиотеке. Мое огорчение сменилось поэтому ликованием, когда я случайно напал на старую ротаторную копию библиографии, которую я давал студентам на одной из своих оксфордских лекций в 1970 г. Черным по белому там стояло «Генетическая теория социального поведения» — за целых пять лет до выхода в свет книги Уилсона. Уилсон, очевидно, не имел возможности видеть мою библиографию, составленную в 1970 г. Не вызывает сомнений, что Уилсон и я независимо один от другого ввели один и тот же мутантный мим.

Как могло произойти такое совпадение? И снова, как и в случае с «Auld Lang Syne», нетрудно найти правдоподобное объяснение. Самая знаменитая книга Р. Фишера называется «Генетическая теория естественного отбора». В мире биологов-эволюционистов это заглавие настолько вошло в обиход, что нам трудно услышать два первых слова и не добавить к ним автоматически третье. Я подозреваю, что как Уилсон, так и я именно это и сделали. Подобное заключение очень удачно для всех участников, ибо никто не станет возражать против того, что на него оказывает влияние Фишер.

id="note11.6">

[11.6]

Компьютеры, в которых живут мимы, — это человеческий мозг.

Было совершенно очевидно, что созданные человеком электронные вычислительные машины также в конечном счете станут обиталищем самореплицирующихся единиц (паттернов) информации-мимов. Компьютеры все больше соединяются друг с другом в сложные сети, что позволяет им пользоваться всей имеющейся в этих сетях информацией. Многие из них буквально соединены проводами, образуя сеть компьютерной почты. Другие делятся информацией, когда их владельцы передают друг другу гибкие дискеты. Это идеальная среда для процветания и распространения самореплицирующихся программ. Когда я работал над первым изданием этой книги, я был достаточно наивен, предполагая, что нежелательный компьютерный мим мог возникнуть лишь в результате спонтанной ошибки при копировании отлаженной программы и считал такое событие маловероятным. Боже, как я был невинен! Эпидемии «вирусов» и «червей», умышленно запущенных злонамеренными программистами, теперь стали бедствием, хорошо знакомым пользователям во всем мире. Мой собственный жесткий диск, как мне стало известно, в прошлом году был заражен во время двух вирусных эпидемий — весьма типичная ситуация для тех, кто много пользуется компьютером. Я не стану приводить названия повинных в этом вирусов, чтобы не доставить гадкого мелкого удовольствия гадким мелким преступникам — «технокрысам». Я называю их «гадкими», так как считаю, что в моральном отношении их поведение ничем не отличается от поведения лаборанта в микробиологической лаборатории, который умышленно заражает питьевую воду и вызывает эпидемию, чтобы потом посмеиваться над заболевшими людьми. Я говорю «мелкие», потому что интеллект этих людей не способен ни на что большее. Не надо большого ума, чтобы создать компьютерный вирус. Любой посредственный программист может это сделать, а в современном мире цена таким программистам — пятак за пару. Я и сам таков. Я даже не буду пытаться объяснять, как действуют компьютерные вирусы. Это слишком очевидно.

Труднее понять, как бороться с ними. К сожалению, некоторым очень высококвалифицированным программистам пришлось тратить свое драгоценное время на составление программ для обнаружения вирусов, программ иммунизации и т. п. (аналогия с медицинской вакцинацией, между прочим, удивительна — вплоть до введения «ослабленного штамма» вируса). Опасность состоит в том, что может возникнуть «гонка вооружений», в которой на каждое достижение в антивирусных мерах будут выдвигаться контр-достижения в новых вирусных программах. До сих пор большинство антивирусных программ создавалось альтруистами и предоставлялось бесплатно, в порядке одолжения. Но я предвижу расцвет целой новой профессии — выделение доходной специальности, подобно любой другой, — «программных докторов», являющихся по вызову, с черными сумками, полными диагностических и лечебных гибких дискет. Я называю их «докторами», однако настоящие врачи решают естественные проблемы, а не проблемы, намеренно созданные людской злобой. В отличие от них, мои «программные доктора» будут, подобно юристам, разрешать проблемы, созданные человеком, которые просто никогда не должны были бы возникнуть. Поскольку действия «технокрыс» должны иметь хоть какие-то побудительные причины, я подозреваю, что сами эти люди несколько склонны к анархизму. Поэтому я обращаюсь к ним: неужели вы в самом деле хотите создать условия для новой очень прибыльной профессии? Если вы этого не хотите, прекратите игру в глупые мимы и направьте свои скромные программистские таланты на что-то более полезное.

id="note11.7">

[11.7]

Слепая вера может оправдать все, что угодно.

На меня обрушился, как и следовало предвидеть, поток писем от жертв веры, протестующих против моей критики. Вера — это такое успешное промывание мозгов (в особенности детских) в интересах самой веры, что перебороть ее влияние трудно. Но что же такое вера? Это некое состояние ума, заставляющее людей верить во что-то — неважно, во что, при полном отсутствии подтверждающих данных. Если бы имелись надежные доказательства, то вера как таковая была бы излишней, так как эти доказательства убеждали бы нас сами по себе. Именно поэтому часто повторяемое утверждение, что «сама эволюция — это вопрос веры», звучит так глупо. Люди верят в эволюцию не потому, что они решили верить в нее, а потому, что о ее существовании свидетельствует огромное количество общедоступных данных.

Я говорю «неважно, во что» верить, подсказывая, что люди готовы верить в совершенно нелепые случайные вещи, как электрический монах в восхитительной книжке Дагласа Адамса «Холистическое детективное агентство Дерка Джентли». Дерк Джентли был создан специально для того, чтобы верить за вас и делал это очень успешно. В тот день, когда мы с ним встречаемся, он непоколебимо верит, вопреки всякой очевидности, что в все в мире окрашено в розовый цвет. Я не хочу утверждать, что все то, во что верит тот или иной индивидуум, непременно нелепо. Оно может быть, а может и не быть нелепым. Суть в том, что установить это невозможно, равно как невозможно отдать предпочтение одному объекту веры перед другим, поскольку все откровенно избегают предъявления каких бы то ни было доказательств. В сущности тот факт, что истинная вера не нуждается в доказательствах, считается главной добродетелью верующих; именно поэтому я рассказал о Фоме Неверном — единственном среди двенадцати апостолов, заслуживающим одобрения.

Вера не может сдвигать горы (хотя многим поколениям детей торжественно внушают обратное и они верят в это). Но вера способна подвигнуть человека на такие опасные безрассудства, что она представляется мне своего рода психическим заболеванием. Она может достигать такой силы, что в экстремальных случаях люди готовы убивать и умирать за веру, не ощущая потребности в каких-либо оправданиях. Кейт Хэнсон (Keith Henson) придумала название «мимеоиды» для «людей, которых какой-то мим увлек до такой степени, что их собственная жизнь стала казаться им ничего не значащей… Множество таких людей можно увидеть в вечерних новостях из таких мест, как Белфаст или Бейрут». Вера может быть достаточно сильной, чтобы сделать людей невосприимчивыми ко всем призывам к жалости, прощению, к благородным человеческим чувствам. Она заставляет их даже утратить чувство страха, если они искренне верят, что мученическая смерть вознесет их прямо на небеса. Что за оружие! Религиозная вера заслуживает отдельной главы в анналах военной техники, на равных правах с луком, боевым конем, танком и водородной бомбой.

id="note11.8">

[11.8]

Мы — единственные существа на Земле, способные восстать против тирании эгоистичных генов.

Оптимистический тон моего заключения вызвал скепсис среди критиков, которым кажется, что он не соответствует содержанию остальной части книги. В некоторых случаях критика исходит от социобиологов-доктринеров. ревниво отстаивающих важность генетического влияния. В других случаях критика парадоксальным образом исходит от противоположной стороны — от верховных жрецов левого толка, защищающих любимую демонологическую икону. У Роуза, Кеймина и Левонтина (Rose, Kamin, Lewontin) в книге «Not in Our Genes» имеется собственное пугало, называемое «редукционизмом»; а принято считать, что все лучшие редукционисты являются одновременно «детерминистами», предпочтительно «генетическими детерминистами».

Мозги — для редукционистов — это определенные биологические объекты, от свойств которых зависят наблюдаемое нами поведение и состояния мышления или намерения, выводимые нами из этого поведения… Такая позиция находится или должна находиться в полном соответствии с законами социобиологии, выдвигаемыми Уилсоном и Докинзом. Если, однако, они ее примут, это поставит их перед дилеммой: прежде всего им придется признать врожденность почти всего поведения человека, а это им, свободным людям, явно покажется непривлекательным (презрение, чувство собственного величия и т. п.), а затем они окажутся вовлеченными в либерально-этические заботы об ответственности за противоправные действия, коль скоро эти действия, подобно всем другим действиям, биологически детерминированы. Чтобы избежать этой проблемы, Уилсон и Докинз призывают на помощь свободу воли, которая дает нам возможность идти против диктата наших генов, если мы этого захотим… Это, в сущности, возврат к беззастенчивому картезианству, дуалистическому deux ex machina.

Я думаю, что Роуз и его коллеги обвиняют нас в стремлении добиться того, чтобы и овцы были целы, и волки сыты. Либо мы должны быть «генетическими детерминистами», либо мы верим в «свободу воли»; совместить то и другое невозможно. Однако и здесь я выступаю от имени проф. Уилсона, так же как и от своего собственного, — мы являемся «генетическими детерминистами» только в глазах Роуза и его коллег. Чего они не понимают (очевидно, хотя в это и трудно поверить), как это того, что можно верить в статистическое влияние генов на поведение человека и одновременно допускать возможность изменения этого влияния, его подавления или реверсии под действием других воздействий. Гены должны оказывать статистическое влияние на все типы поведения, возникающие под действием естественного отбора. Роуз и его коллеги, надо полагать, согласятся с тем, что половое влечение у человека возникло под действием естественного отбора в том же смысле, как все на свете всегда эволюционирует под действием естественного отбора. Поэтому они должны согласиться с тем, что имеются гены, оказывающие влияние на половое влечение — в том смысле, что гены всегда воздействуют на все. Тем не менее они сдерживают свое половое влечение, когда этого требует общество. Что в этом двойственного? Совершенно очевидно, что ничего. И не более двойствен мой призыв к восстанию «против тирании эгоистичных репликаторов». Мы, т. е. наш мозг, достаточно обособлены и независимы от наших генов, чтобы восстать против них. Как уже говорилось, мы это делаем, так сказать, «по мелочи», всякий раз, когда прибегаем к противозачаточным средствам. Нет никаких причин к тому, чтобы мы — не могли взбунтоваться и в более широких масштабах.


>

ISBN 5–03–002531–6 (русск.)

© Oxford University Press 1976 ISBN 0–19–286092–5 (англ.)

The Edition © Richard Dawkins 1989

This book was originally published in the English language by Oxford University Press, Oxford, England

© перевод на русский язык, Фомина Н. О., 1993


Глава 5. Агрессия: стабильность и эгоистичная машина

id="note5.1">

[5.1]

...эволюционно стабильная стратегия…

Сформулируем теперь главную идею ЭСС следующим, более экономичным способом. ЭСС это стратегия, эффективная против копий самой себя. В основе такого определения лежат следующие соображения. Успешная стратегия — это стратегия, доминирующая в данной популяции. Поэтому она будет сталкиваться с собственными копиями и сможет оставаться эффективной лишь в том случае, если будет успешно справляться с этими копиями. Это определение математически не столь точно, как определение Мэйнарда Смита, и оно не может заменить последнее, поскольку в сущности является неполным. Однако оно обладает тем достоинством, что неявно заключает в себе основную идею ЭСС.

В настоящее время концепция ЭСС получила среди биологов более широкое распространение, чем тогда, когда была написана эта глава. Мэйнард Смит сам подвел итоги всего, что было сделано до 1982 г., в своей книге «Эволюция и теория игр». Несколько позже написал обзор Джеффри Паркер (Geoffrey Parker), еще один из тех, кто внес большой вклад в эту область. Теория ЭСС использована в «Эволюции кооперации» Роберта Аксельрода (Robert Axelrod), но я не стану обсуждать ее здесь, так как одна из двух моих новых глав, «Добрые парни финишируют первыми», в значительной своей части посвящена книге Аксельрода. Сам я после выхода в свет первого издания этой книги опубликовал на тему теории ЭСС статью «Хорошая стратегия или эволюционно стабильная стратегия», а также, вместе с соавторами, статьи о сфексах, рассматриваемых ниже.



[5.2]

...стратегия… Отпорщика стабильна в эволюционном смысле.

Это утверждение, к сожалению, оказалось неверным. В оригинальной статье Мэйнарда Смита и Прайса была допущена ошибка, а я повторил ее в этой главе и даже усугубил, высказав довольно глупое мнение, что стратегия «Испытатель-Отпорщик» — это «почти» эволюционно стабильная стратегия (если некая стратегия «почти» ЭСС, то значит, это не ЭСС и будет побеждена). На первый взгляд кажется, что стратегия Отпорщик похожа на ЭСС, потому что в популяции Отпорщиков ни одна другая стратегия не может быть более эффективной. Но Голубь в такой популяции оказывается столь же эффективным, так как его поведение в ней неотличимо от поведения Отпорщика. Поэтому Голубь может постепенно втягиваться в популяцию. Важно понять, что же происходит в дальнейшем. Дж. Хейл (J. S. Hale) и Л. Ивз (L. J. Eaves) создали динамическую компьютерную модель, которая воспроизводит эволюцию популяции животных на протяжении многих поколений. Они показали, что подлинная ЭСС в этой игре возможна при стабильной смеси Ястребов и Задир. Это не единственная ошибка в ранних работах по ЭСС, обнаруженная при такого рода динамическом подходе. Другим хорошим примером служит моя собственная ошибка, рассматриваемая в примечаниях к гл. 9.



[5.3]

К сожалению, наши знания пока слишком ограниченны для того, чтобы давать реалистические оценки потерь и выигрышей при различных исходах подлинных событий, происходящих в природе.

Мы теперь располагаем некоторыми надежными измерениями потерь и выигрышей в природе, которые проводились полевыми методами; эти данные были введены в определенные модели ЭСС. К числу лучших примеров относится один из видов роющих ос — сфексов, обитающих в Северной Америке. Это вовсе не те хорошо знакомые всем общественные осы, облепляющие наши банки с вареньем, которые представляют собой рабочих особей (самок) и заняты добыванием корма для своей колонии. У сфексов каждая самка предоставлена самой себе, и вся ее жизнь посвящена тому, чтобы обеспечить кров и пищу последовательным вереницам личинок. В типичном случае самка начинает с того, что пробуравливает в земле длинную норку, в конце которой имеется обширная камера. Затем она начинает охоту за добычей (это могут быть различные прямокрылые, например кузнечики, или другие насекомые и их личинки). Найдя жертву, оса парализует ее уколом жала и утаскивает в норку. Набрав четыре или пять насекомых, она откладывает на них яйцо и запечатывает норку. Из яйца вылупляется личинка, питающаяся заготовленными для нее насекомыми. Заметим между прочим, что оса парализует, т. е. обездвиживает, а не убивает своих жертв, с тем чтобы они не разлагались, а оставались живыми и личинки получали бы свежую пищу. Именно этот мрачный обычай, свойственный также другим перепончатокрылым, ихневмонидам, побудил Дарвина написать: «Я не могу убедить себя, что милосердный и всемогущий Господь мог намеренно создать ихневмонид специально для того, чтобы они кормились в телах живых гусениц…» Дарвин мог бы привести в качестве примера и известного французского повара, который варил раков живьем, чтобы они были вкуснее. Возвращаясь к жизни самки сфекса, следует сказать, что она ведет одиночный образ жизни, если не считать других самок, которые трудятся поблизости, а иногда даже занимают чужие норки, вместо того чтобы вырыть собственную.

Д-р Джейн Брокман (Jane Brockmann) — своего рода осиный эквивалент Джейн Гудол. Она приехала из Америки в Оксфорд поработать со мной, привезя с собой объемистые записи о почти каждом событии в жизни каждой самки в двух популяциях ос, в которых всех самок можно было идентифицировать. Ее данные были столь полными, что позволяли составить бюджет времени индивидуальных ос. Время — это предмет потребления, который следует расходовать осмотрительно: чем больше времени расходуется в одной области жизни, тем меньше остается на другие. Присоединившийся к нам Ален Грейфен (Alan Grafen) учил нас правильно оценивать стоимость затрат времени и репродуктивных выигрышей. Мы получили данные о том, что в игре между самками ос в одной популяции из Нью-Хэмпшира используется настоящая смешанная ЭСС, хотя для другой популяции из Мичигана таких данных получить не удалось. Коротко, нью-хемпширские осы либо роют собственные норки, либо занимают гнездо, устроенное другой осой. Согласно нашей интерпретации, занимая чужое гнездо, осы могут выгадать, так как некоторые норки бывают брошены теми, кто их вырыл, и их можно использовать. Проникновение в занятое гнездо не окупается, но у входящей в чужое гнездо осы нет способа, позволяющего определять, занято данное гнездо или свободно. Она рискует провести несколько дней, не подозревая о второй хозяйке, пока однажды, вернувшись домой, не обнаружит, что норка запечатана: все ее усилия пропали даром, вторая хозяйка отложила свое яйцо и пожинает плоды всех трудов. Если в данной популяции делается слишком много попыток занять чужое гнездо, имеющихся норок становится мало, шансы на то, что у гнезда окажется две хозяйки, возрастают, и поэтому рыть собственную норку становится выгодно. И наоборот, если многие осы роют норки, их становится много и это благоприятствует захвату чужих нор. Существует некоторая критическая для данной популяции частота проникновения в чужие норки, при которой рыть собственную норку и проникать в чужую одинаково выгодно. Если действительная частота ниже критической, то естественный отбор благоприятствует проникновению в чужую норку ввиду наличия многочисленных покинутых норок. Если же действительная частота выше критической, то таких норок мало, и естественный отбор благоприятствует рытью собственных норок. Таким образом в популяции поддерживается некое равновесие. Детальное количественное исследование приводит к выводу, что в данной популяции имеет место настоящая смешанная ЭСС, т. е. каждая отдельная оса с некоторой вероятностью может рыть себе норку или проникать в чужую, в отличие от популяции, состоящей из смеси особей, специализированных либо к одному, либо к другому поведению.



[5.4]

Наилучшую из всех известных мне демонстраций этой формы асимметрии в поведении…

Еще более яркую, чем Тинберген, демонстрацию принципа «резидент всегда побеждает» дает Н. Дейвис (N. B. Davies), изучавший бабочек Pararge aegeria. Работа Тинбергена проводилась до создания теории ЭСС, и моя интерпретация ЭСС в первом издании этой книги была непредусмотрительна. Дейвис задумал свое исследование поведения бабочек с учетом теории ЭСС. Он обратил внимание на то, что у Уитхэм Вуд, близ Оксфорда, отдельные самцы бабочек защищали пятна солнечного света. Дело в том, что эти пятна привлекали к себе самок, тем самым превращая пятна в ценный ресурс — во что-то, за что имеет смысл бороться. Самцов было больше, чем освещенных солнцем участков, так что не завладевшие такими участками индивидуумы ожидали своего часа в тени, под пологом листвы. Отлавливая самцов и выпуская их затем одного за другим, Дейвис показал, что того из них, которого он выпускал на солнечный участок первым, оба самца считали «владельцем». Тот же самец, который попадал на участок вторым, считался «захватчиком». Захватчик абсолютно во всех случаях быстро признавал себя побежденным, предоставляя владельцу полное право распоряжаться участком. В заключительном, разящем наповал эксперименте Дейвис сумел обмануть обоих самцов, заставив их «думать», что один из них владелец участка, а другой — захватчик. Только в этих условиях между ними возникала действительно серьезная длительная борьба. Между прочим, во всех этих случаях, когда я для простоты говорил об одной паре бабочек, на самом деле Дейвис работал с выборкой, позволяющей получить статистически достоверные результаты.



[5.5]

Парадоксальная ЭСС.

Другой случай, который мог бы служить примером парадоксальной ЭСС, описан в письме некоего м-ра Джеймса Доусона (James Dawson), опубликованном в газете «Тайме». «В течение нескольких лет я замечал, что одна чайка, используя флагшток в качестве выгодной позиции, неизменно уступала его другой чайке, которая стремилась занять это место, причем соотношение размеров двух птиц не играло никакой роли».

Самым убедительным известным мне примером парадоксальной стратегии служит поведение домашних свиней в скиннеровской камере. Эта стратегия стабильна в таком же смысле, как любая ЭСС, но ее лучше называть МСС («морфологически стабильная стратегия»), так как она возникает в течение собственной жизни данного животного, а не на протяжении эволюционного времени. Скиннеровская камера представляет собой устройство, в котором животное научается добывать себе пищу, нажимая на рычаг, после чего пища автоматически подается на лоток. Экспериментальные психологи часто помещают голубей или крыс в небольшие скиннеровские камеры, где животные быстро научаются нажимать на изящные небольшие рычаги, чтобы получить вознаграждение в виде пищи. Этому удалось обучить также свиней, помещая их в оборудованные специальным образом скиннеровские камеры с отнюдь не изящным рычагом, который они должны нажимать рылом (много лет назад я смотрел научный кинофильм об этих экспериментах и до сих пор помню, как я помирал со смеху). Б. Болдуин (B. A. Baldwin) и Дж. Меесе (G. Meese) обучали свиней в свинарнике, оборудованном наподобие скиннеровской камеры, но имевшем еще одну особенность: рычаг находился на одном конце свинарника, а кормушка на другом. Поэтому свинье приходилось, нажав на рычаг, мчаться на другой конец свинарника, чтобы получить пищу, а затем снова бежать к рычагу и т. д. Все шло прекрасно, но затем Болдуин и Меесе поместили в хлев пару свиней. Это дало возможность одной свинье эксплуатировать другую. Свинья-«раб» носилась вперед и назад, нажимая на рычаг, а свинья-«хозяин» сидела около кормушки, пожирая пищу по мере ее поступления. В парах свиней устанавливаются такого рода прочные отношения «хозяин/раб»: один съедает почти все, а другой работает и бегает.

Вернемся к парадоксу. Ярлыки «хозяин» и «раб» оказались совершенно неадекватными истинному положению вещей. Во всех парах свиней, в которых устанавливались стабильные взаимоотношения, в роли «хозяина», или «эксплуататора», всегда выступала свинья, которая во всем остальном занимала подчиненное положение. А так называемым «рабом», выполнявшим всю работу, была свинья, которая обычно доминировала. Всякий, знакомый с поведением свиней, предсказал бы, что «хозяином», поедающим большую часть корма, будет доминантная свинья, а роль «раба», много работающего и почти не получающего пищи, достанется свинье, находящейся в подчинении.

Как могла произойти такая парадоксальная перестановка? Это нетрудно понять, если начать рассуждать в рамках концепции стабильных стратегий. Для этого достаточно перевести принцип ЭСС из масштабов эволюционного времени в масштабы времени, в котором протекает жизнь индивидуума, т. е. в котором складываются отношения между двумя свиньями. Стратегия «если ты занимаешь доминирующее положение, сиди все время возле еды; если подчиняешься — управляй рычагом» звучит разумно, но она не будет стабильной. Подчиняющаяся свинья, нажав на рычаг, должна была бы быстро бежать к кормушке, где она обнаружила бы доминантную свинью, которая уперлась передними ногами в кормушку, да так, что ее невозможно сдвинуть с места. Подчиняющаяся свинья быстро перестала бы нажимать на рычаг, поскольку это поведение никогда не вознаграждалось. Рассмотрим теперь противоположную стратегию: «если ты доминируешь — управляй рычагом; если подчиняешься — сиди у кормушки». Такая стратегия окажется стабильной, несмотря на то, что она приводит к парадоксальному результату, когда подчиняющаяся свинья получает большую часть корма. Необходимо лишь, чтобы доминантной свинье оставалось хоть сколько-нибудь корма, когда она мчится к кормушке с другой стороны хлева. Добежав, она без труда оттолкнет подчиняющуюся свинью от кормушки. До тех пор, пока доминирующей свинье достаются в награду хоть какие-то крохи, она будет продолжать приводить в действие рычаг, а тем самым непреднамеренно давать возможность подчиняющейся свинье обжираться. А подчиняющаяся свинья будет продолжать лениво сидеть у кормушки, так как это тоже вознаграждается. Таким образом, вся стратегия, при которой доминирующий индивидуум выступает в роли «раба», а подчиняющийся — в роли «хозяина», вознаграждается, а поэтому она стабильна.



[5.6]

...своего рода иерархическая структура [у сверчков]…

Тед Берк (Ted Burk), бывший в то время моим аспирантом, обнаружил дальнейшие свидетельства такой псевдоиерархической структуры у сверчков. Он также показал, что самец у них чаще начинает ухаживать за самками, если недавно вышел победителем в драке с другим самцом. Это следовало бы назвать «эффектом герцога Мальборо», основываясь на следующей записи в дневнике первой герцогини Мальборо: «Его светлость вернулся сегодня с войны и, не снимая сапог, дважды доставил мне удовольствие». Можно придумать и другое название, связав его со следующим сообщением об изменениях уровня мужского гормона тестостерона, опубликованным в журнале New Scientist: «Уровень тестостерона у теннисистов в течение суток, предшествовавших большому матчу, повышался. По окончании матча у победителей высокий уровень сохранялся, а у побежденных падал».



[5.7]

...концепцию ЭСС как одно из важнейших достижений эволюционной теории после Дарвина.

Это, пожалуй, слишком сильно сказано. Я, вероятно, чересчур быстро отреагировал на преобладавшее в те годы пренебрежительное отношение к идее ЭСС в биологической литературе, особенно в Америке. Так, например, этот термин ни разу не упоминается в объемистой «Социобиологии» Э. Уилсона (E. O. Wilson). Теперь им больше не пренебрегают, а поэтому я могу занять более критическую и менее снисходительную позицию. Вовсе не обязательно пользоваться терминологией ЭСС, при условии, что ваши рассуждения достаточно четкие. Но эта терминология сильно способствует ясности мышления, особенно в тех случаях — а практически таких случаев большинство, — когда подробные генетические данные отсутствуют. Иногда говорят, что в основе модели ЭСС лежит допущение о бесполом размножении, однако такое утверждение вводит в заблуждение, если воспринимать его как явное противопоставление бесполого размножения половому. На самом же деле модели ЭСС не утруждают себя рассмотрением деталей генетической системы. Вместо этого они несколько туманно допускают, что подобное рождает подобное. Для многих целей такое допущение вполне пригодно. В сущности его неопределенность может быть даже благотворной, поскольку помогает сосредоточить внимание на главном, не вдаваясь в такие детали, как генетическое доминирование, о которых в конкретных случаях обычно ничего неизвестно. Концепция ЭСС весьма полезна в своей негативной роли: она помогает нам избежать теоретических ошибок, в которые мы могли бы впасть в ее отсутствие.



[5.8]

Прогрессивная эволюция — это, возможно, не столько упорное карабканье вверх, сколько ряд дискретных шагов от одного стабильного плато к другому.

Этот абзац представляет собой краткое и беспристрастное изложение хорошо известной в настоящее время теории прерывистого равновесия. Мне стыдно признаться, что когда были написаны эти строки, я, подобно многим биологам Англии в то время, совершенно ничего не знал об этой теории, хотя она была опубликована тремя годами ранее. Позднее, например в «Слепом часовщике», я проявлял некоторое раздражение (возможно, чрезмерное) из-за того, что теорию прерывистого равновесия слишком переоценивали. Я сожалею, если это оскорбило чьи-то чувства. Может быть, этим лицам приятно будет узнать, что во всяком случае в 1967 г. мои намерения были самыми добрыми.







 

Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх