Глава 6. Генное братство

Эгоистичный ген? Что это такое? А это всего лишь один-единственный физический кусочек ДНК. Точно так же, как и в первичном бульоне, это все реплики одного определенного кусочка ДНК, распространенные по всему свету. Если мы позволяем себе вольность говорить о генах как о сознательных существах, обладающих душой (постоянно успокаивая себя, что при желании мы в любой момент можем вернуться от наших неряшливых выражений к приличным терминам), то правомерно задать вопрос: что же пытается совершить каждый отдельный эгоистичный ген? Он старается стать все более многочисленным в данном генофонде. В принципе он делает это, помогая программировать тела, в которых он находится, на выживание и размножение. Но здесь мы подчеркиваем, что «он» — это некий фактор, существующий одновременно во многих телах. Главная мысль этой главы заключается в том, что каждый данный ген, возможно, способен помогать своим репликам, находящимся в других телах. В таком случае можно говорить о неком индивидуальном альтруизме, обусловленном, однако, эгоистичностью гена.

Рассмотрим ген, детерминирующий альбинизм у человека. На самом деле существует несколько генов альбинизма, но я говорю лишь об одном из них. Это рецессивный ген, т. е. для того, чтобы быть альбиносом, человек должен содержать двойную дозу данного гена. Альбиносы встречаются среди нас с частотой примерно 1:20 000. Однако у одного человека из 70 г.н альбинизма содержится в единичной дозе, и эти люди не альбиносы. Поскольку ген альбинизма имеется у многих людей, теоретически он мог бы обеспечить свое сохранение в генофонде, программируя тела этих людей так, чтобы они относились альтруистично к другим альбиносам, раз известно, что они несут тот же ген. Ген альбинизма был бы очень доволен, если бы некоторые из тел, в которых он обитает, умирали, при условии, что это помогло бы выжить другим телам, содержащим тот же ген. Если бы ген альбинизма мог заставить одно из содержащих его тел спасти жизни десяти альбиносам, то даже гибель одного альтруиста была бы полностью компенсирована повышением числа генов альбинизма в генофонде.

Должны ли мы в таком случае ожидать, что альбиносы будут хорошо относиться друг к другу? На это, вероятно, следует ответить «нет». Для того чтобы понять, почему нет, оставим на время нашу метафору, представляющую ген как фактор, наделенный сознанием, потому что в данном контексте это положительно собьет нас с толку. Нам следует вернуться пусть к скучным, но корректным выражениям. Гены альбинизма на самом деле не «хотят» выжить или помогать другим генам альбинизма. Но если ген альбинизма хотя бы побуждает тела, в которых он обитает, вести себя альтруистично по отношению к другим альбиносам, то волей-неволей это автоматически приведет к увеличению его численности в генофонде. Однако для того, чтобы это случилось, упомянутый ген должен оказывать на тела два независимых воздействия. Он должен не только вызывать свой обычный эффект, т. е. отсутствие пигментации покровов, но и побуждать тела проявлять избирательный альтруизм по отношению к индивидуумам с очень слабой пигментацией. Такой ген, обладающий двумя эффектами, если бы он существовал, мог бы весьма успешно действовать в популяции.

Как уже подчеркивалось в гл. 3, гены действительно обладают множественными эффектами. Теоретически возможно возникновение гена, детерминирующего какую-то внешнюю «метку», например бледную кожу, или зеленую бороду, или что-нибудь столь же приметное, и одновременно тенденцию особенно хорошо относиться к носителям такой метки. Это возможно, но маловероятно. С равной вероятностью зеленобородость может быть сцеплена со склонностью к врастанию ногтей на пальцах ног или с любым другим признаком, а симпатия к зеленым бородам — с неспособностью воспринимать аромат фрезий. Маловероятно, чтобы один и тот же ген детерминировал данную метку и соответствующий ей тип альтруизма. Тем не менее то, что можно было бы назвать «эффектом альтруизма к зеленой бороде», теоретически допустимо.

Произвольная метка вроде зеленой бороды — просто один из способов, с помощью которого ген мог бы «узнавать» о наличии в других индивидуумах копий самого себя. Есть ли какие-либо другие способы?

Да, и наиболее прямой из них состоит в следующем. Обладателя какого-либо альтруистичного гена можно было бы узнать просто потому, что он совершает альтруистичные акты. Ген мог бы процветать в генофонде, если бы он «сказал» своему телу нечто вроде: «Тело, если A тонет при попытке спасти кого-то другого, прыгай и спасай А». Причина, по которой такой ген мог бы действовать столь благородно, состоит в том, что вероятность наличия у A тех же самых альтруистичных генов — генов-спасателей — выше, чем средняя. Тот факт, что A пытался спасти кого-то другого, представляет собой метку, эквивалентную зеленой бороде. Она менее надуманна, чем зеленая борода, но тем не менее кажется довольно неправдоподобной. Существуют ли какие-то заслуживающие доверия способы, которые позволяли бы генам «узнавать» свои копии в других индивидуумах?

Да, существуют. Нетрудно показать, что у близких родственников вероятность наличия общих генов выше средней. Давно стало ясно, что именно по этой причине столь обычен альтруизм родителей по отношению к своим детям. А Р. Фишер, Дж. Холдейн и в особенности У. Гамильтон поняли, что это распространяется и на других близких родственников — сестер и братьев, как родных, так и двоюродных, племянников и племянниц. Если индивидуум умирает, чтобы спасти десять близких родственников, то одна копия гена, определяющего альтруизм в отношении близких родственников (кин-альтруизм), может погибнуть, однако гораздо большее число копий того же гена будет спасено.

«Большее число» — это весьма неопределенно, равно как и «близкие родственники». Как показал Гамильтон, возможна и большая определенность. Две его работы, опубликованные в 1964 г., принадлежат к числу самых значительных вкладов в социальную этологию из когда-либо написанных, и я никогда не мог понять, почему этологи так пренебрегают этими работами (имя Гамильтона даже не упоминается в указателях двух больших учебников этологии, опубликованных в 1970 г.)[6.1]. К счастью, в последнее время интерес к его идеям начинает возрождаться. Работы Гамильтона насыщены математикой, однако их основные принципы схватываются интуитивно, без строгих математических рассуждений, хотя при этом неизбежно некоторое переупрощение. Нам предстоит вычислить вероятность наличия данного определенного гена у двух индивидуумов, например у двух сестер.

Допустим для простоты, что мы рассматриваем гены, редко встречающиеся в генофонде в целом[6.2]. У большинства людей имеется «ген, определяющий невозможность быть альбиносом», независимо от того, связаны люди родством или нет. Такое широкое распространение этого гена объясняется тем, что в природе вероятность выживания для альбиносов ниже, чем для неальбиносов, хотя бы потому, что солнце ослепляет их и им относительно трудно заметить приближающегося хищника. Нас не интересуют причины преобладания в генофонде таких явно «хороших» генов, как ген «неальбинизма». Мы стремимся объяснить успех генов, обусловленный именно их альтруизмом. Поэтому мы можем допустить, что по крайней мере на ранних стадиях этого эволюционного процесса такие гены редки. Здесь важно отметить, что даже ген, редкий в популяции в целом, может часто встречаться в отдельной семье. И у меня, и у вас имеется некоторое число генов, редко встречающихся в популяции в целом. Шансов на то, что вы и я несем одинаковые редкие гены, очень мало. Однако весьма вероятно, что у моей сестры имеется тот же самый редкий ген, что и у меня, и столь же вероятно, что вы и ваша сестра тоже несете один и тот же редкий ген; шансы в данном случае составляют ровно 50%, и объяснить причины этого нетрудно.

Допустим, что в вашем генотипе имеется одна копия гена G. Вы могли получить ее либо от своего отца, либо от матери (для простоты можно отбросить различные редко встречающиеся возможности: что ген G — новая мутация; что этот ген имелся у обоих ваших родителей или же в двойной дозе у одного из них). Пусть вы получили ген G от своего отца. В таком случае каждая из обычных клеток его тела содержала по одной копии этого гена. Как вы, вероятно, помните, каждый сперматозоид, образующийся у мужчины, содержит половину его генов. Таким образом, вероятность того, что в сперматозоид, зачавший вашу сестру, попадает ген G, равна 50%. Если же вы получили ген G от своей матери, то из точно таких же рассуждений вытекает, что половина ее яйцеклеток должна была содержать ген G, и опять-таки вероятность получения гена G вашей сестрой равна 50%. Это означает, что если у вас есть 100 братьев и сестер, то примерно 50 из них должны обладать любым имеющимся у вас редким геном. Это означает также, что если у вас есть 100 редких генов, то примерно 50 из них имеются в теле любого из ваших братьев или сестер.

Аналогичные вычисления можно произвести для лиц, связанных родством любой степени. Важные зависимости существуют между родителями и детьми. Если у вас имеется одна доза гена J, то вероятность наличия этого гена у каждого из ваших детей равна 50%, потому что он содержится в половине ваших половых клеток, а каждый из ваших детей был зачат при участии одной из этих половых клеток. Если у вас имеется одна доза гена J, то вероятность того, что этот ген имелся также у вашего отца, равна 50%, потому что вы получили половину своих генов от него, а половину — от матери. Для удобства мы пользуемся коэффициентом родства, выражающим вероятность наличия данного гена у двух родственников. Коэффициент родства между двумя братьями равен 1/2, поскольку половина генов, имеющихся у одного из братьев, будет обнаружена и у другого. Это средняя цифра: в результате мейотического драйва у данных двух братьев может быть больше или меньше общих генов. Коэффициент родства между родителем и ребенком всегда равен точно 1/2.

Проделывать всякий раз все эти вычисления с самого начала довольно скучно. Существует грубое, но эффективное правило для установления коэффициента родства между двумя индивидуумами, А и B. Оно может оказаться вам полезным при составлении завещания или для объяснения явных случаев сходства в семье. Оно пригодно для всех простых ситуаций, но не действует при кровосмесительных браках и, как мы увидим, у некоторых насекомых.

Установим сначала всех общих предков A и B. Например, общие предки двух двоюродных братьев или сестер — это их общие дед и бабка. По логике вещей все предки этих общих предков также будут общими для A и B. Однако мы пренебрежем всеми общими предками, кроме самых недавних. В этом смысле у двоюродных братьев и сестер только два общих предка. Если 5-прямой потомок A, например его правнук, то сам A и есть тот «общий предок», которого мы ищем.

Найдя общего предка(ов) А и B, займемся вычислением генерационного расстояния (число разделяющих поколений) между ними. Для этого, начав с A, нужно взобраться вверх по генеалогическому древу до общего предка, а затем спуститься вниз до B. Суммарное число шагов вверх, а затем вниз по древу и составит генерационное расстояние. Если, например, А приходится B дядей, то генерационное расстояние равно 3. Общий предок в данном случае — отец A и дед B. Начав с A, вам следует подняться на одно поколение, чтобы дойти до общего предка. Затем, чтобы дойти до B, вы должны спуститься на два поколения на другой стороне древа. Поэтому генерационное расстояние равно 1 + 2 = 3.

Найдя генерационное расстояние между A и B через конкретного общего предка, можно вычислить ту долю их коэффициента родства, которая обусловлена этим предком. Для этого нужно умножить 1/2 на себя столько раз, сколько шагов в генерационном расстоянии. Если генерационное расстояние равно трем шагам, то надо умножить 1/2x1/2x1/2, или возвести 1/2 в третью степень. Если генерационное расстояние через конкретного общего предка равно g шагам, то доля коэффициента родства, обусловленная этим предком, будет равна (1/2)^g.

Это, однако, лишь часть коэффициента родства между A и B. Если у них окажется больше одного общего предка, то мы должны добавить эквивалентную величину для каждого предка. Обычно у данных двух индивидуумов генерационное расстояние для всех общих предков одинаково. Поэтому, установив коэффициент родства между A и B, обусловленный любым из их общих предков, вам достаточно лишь умножить его на число этих предков. Например, у двоюродных братьев или сестер имеются два общих предка и генерационное расстояние через каждого из них равно 4. Поэтому коэффициент родства равен 2x(1/2)^4 = 1/8. Если A — правнук B, то генерационное расстояние равно 3, а число общих «предков» равно 1 (сам В), так что коэффициент родства составляет 1x(1/2)^3 = 1/8. Аналогичным образом, у вас равные шансы «пойти» как в своего дядю (коэффициент родства = 2x(1/2)^3 = 1/4) так и в своего деда (коэффициент родства = 1x(1/2)^2= 1/4.

В случае такого далекого родства, как четвероюродные братья или сестры [2x(1/2)^8 = 1/128], вероятность наличия у них общих генов приближается к вероятности того, что некий ген, имеющийся у A, будет обнаружен у индивидуума, выбранного наудачу из популяции. В том, что касается гена альтруизма, четвероюродный брат мало отличается от какого-нибудь старины Тома, Дика или Гарри. Троюродный брат (коэффициент родства = 1/32) всего лишь чуть ближе, а двоюродный — еще несколько ближе (1/8). Родные братья и сестры и родители и дети очень близки (1/2), а однояйцовые близнецы (коэффициент родства = 1) совершенно идентичны. Тетки и дядья, племянники и племянницы, деды или бабки и внуки, а также единоутробные и единокровные братья и сестры занимают промежуточное положение (коэффициент родства = 1/4).

Теперь мы имеем возможность рассуждать о генах кин-альтруизма гораздо более конкретно. Ген, определяющий самоубийственное спасение пятерых двоюродных братьев и сестер, не станет более многочисленным в популяции, но численность гена, определяющего спасение пятерых родных братьев и сестер ценой собственной гибели, повысится. Минимальное условие, необходимое гену самоубийственного альтруизма для успеха, состоит в том, чтобы спасти больше двух своих сибсов (или детей, или родителей), либо больше двух полусибсов (или дядьев, теток, племянников, племянниц, дедов, бабок, внуков), либо более восьми двоюродных сибсов и т. д. Такой ген в среднем продолжает жить в телах достаточного числа индивидуумов, спасенных альтруистом, чтобы компенсировать гибель его самого.

Если бы некий индивидуум был уверен, что данное лицо является его идентичным близнецом, он заботился бы о его благополучии точно так же, как о своем собственном. Любой ген близнецового альтруизма имеется у обоих близнецов, поэтому если один из них героически гибнет, спасая другого, ген продолжает жить. Девятипоясные броненосцы обычно рождают идентичную четверню. Насколько мне известно, ни о каких актах героического самопожертвования, совершаемых молодыми броненосцами, не сообщалось; однако высказывалось мнение, что у них определенно следует ожидать каких-то сильных проявлений альтруизма. Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим [6.3].

Теперь нам понятно, что забота о потомстве — всего лишь частный случай кин-альтруизма. С генетической точки зрения взрослый индивидуум должен уделять совершенно столько же заботы и внимания своему осиротевшему брату-младенцу, как и собственным детям. Коэффициент его родства с обоими младенцами совершенно одинаков, 1/2. С точки зрения генного отбора ген, детерминирующий альтруистичное поведение старшей сестры, должен иметь столько же шансов распространиться в популяции, как и ген родительского альтруизма. На самом деле это очень сильное упрощение (по многим причинам, которые мы рассмотрим позднее), а братская или сестринская забота отнюдь не столь обычна в природе, как родительская. Здесь, однако, я хочу показать, что с генетической точки зрения нет ничего особенного во взаимоотношениях родители/дети по сравнению со взаимоотношениями братья/сестры. Тот факт, что родители действительно наделяют своих детей генами, а сестры не наделяют ими друг друга, не имеет значения, поскольку обе сестры получают идентичные реплики одних и тех же генов от одних и тех же родителей.

Некоторые авторы используют термин кин-отбор для того, чтобы отличать этот тип естественного отбора от группового отбора (дифференциальное выживание групп) и индивидуального отбора (дифференциальное выживание индивидуумов). Кин-отбор ответствен за внутрисемейный альтруизм; чем теснее родство, тем сильнее отбор. В термине кин-отбор нет ничего плохого, но, к сожалению, от него, возможно, придется отказаться ввиду того, что в последнее время его совершенно неправильно употребляют и в будущем это может привести биологов в полное замешательство. Э. Уилсон (E. O. Wilson) в своей, в остальном прекрасной, книге «Социобиология. Новый синтез» определяет кин-отбор как особый случай группового отбора. В книге есть схема, которая ясно показывает, что с точки зрения Уилсона кин-отбор занимает промежуточное положение между «индивидуальным отбором» и «групповым отбором» в общепринятом смысле, т. е. в том смысле, в каком я их употреблял в гл. 1. Между тем групповой отбор — даже по определению самого Уилсона — означает дифференциальное выживание групп индивидуумов. Конечно, в некотором смысле семья — это особый тип группы. Однако вся суть рассуждений Гамильтона сводится к тому, что различие между семьей и несемьей не есть нечто определенное и нерушимое, а зависит от математической вероятности. Теория Гамильтона отнюдь не утверждает, что животные должны относиться альтруистически ко всем «членам семьи» и эгоистически — ко всем другим. Между семьей и несемьей нельзя провести строгую границу. Нам не надо решать, следует ли, например, относить к числу членов семьи троюродных братьев и сестер или считать их чужими: мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов. Кин-отбор никак нельзя считать особым случаем группового отбора [6.4]. Это особое следствие генного отбора.

Уилсоновское определение кин-отбора содержит и другой, еще более серьезный недостаток. Оно преднамеренно исключает потомков: они не считаются родственниками![6.5] Разумеется, Уилсон прекрасно знает, что потомки связаны родством со своими родителями, но предпочитает не взывать к теории кин-отбора для того, чтобы объяснить альтруизм, проявляемый родителями в заботе о собственных потомках. Он, конечно, вправе определять термин так, как считает нужным, но это определение создает сильную путаницу, и я надеюсь, что в последующих изданиях своей действительно очень ценной книги он его изменит. С генетической точки зрения родительская забота о потомстве и братско-сестринский альтруизм возникли в процессе эволюции по совершенно одной и той же причине: в обоих случаях велика вероятность наличия в теле опекаемого индивидуума гена альтруизма.

Я прошу прощения у читателя-неспециалиста за эту небольшую обличительную речь и спешу вернуться к нашей главной теме. До сих пор я слишком сильно упрощал изложение, но настало время ввести некоторые оценки. Я говорил просто о генах, детерминирующих самоубийство ради спасения жизни определенного числа родственных индивидуумов, коэффициент родства с которыми точно известен. Совершенно очевидно, что в реальной действительности животные неспособны точно сосчитать, сколько родственных индивидуумов они спасают, или провести в уме гамильтоновские расчеты, даже если бы они могли каким-то образом наверняка знать, что данные индивидуумы в самом деле их родные, двоюродные и т. п. братья и сестры. В реальной жизни верное самоубийство и несомненное «спасение» жизни должны быть заменены статистическим риском гибели как для самого себя, так и для других. Может статься, что имеет смысл спасать даже четвероюродного брата, если риск для самого себя при этом очень невелик. Кроме того, как вы, так и родственник, которого вы собираетесь спасать, в любом случае в один прекрасный день несомненно умрете. Для каждого индивидуума существует некая «ожидаемая продолжительность жизни», которую страховая компания может вычислить с некоторой степенью точности. Спасение жизни родственника, который скоро умрет от старости, окажет меньшее влияние на будущий генофонд, чем спасение жизни столь же близкого родственника, у которого большая часть жизни еще впереди.

Наши изящные симметричные вычисления коэффициентов родства придется модифицировать с учетом путаных и сложных взвешиваний, производимых статистиками страховых компаний. Деды и бабки, с одной стороны, и внуки — с другой, в генетическом смысле имеют равные основания проявлять друг к другу альтруизм, поскольку их гены на 1/4 одинаковы. Но поскольку ожидаемая продолжительность жизни внуков больше, гены альтруизма дедов и бабок по отношению к внукам имеют более высокую селективную ценность, чем гены альтруизма внуков по отношению к дедам и бабкам. Вполне возможно, что чистый выигрыш от помощи, оказанной молодому дальнему родственнику, будет выше чистого выигрыша от помощи пожилому близкому родственнику. (Кстати сказать, ожидаемая продолжительность жизни у дедов и бабок вовсе необязательно должна быть меньше, чем у внуков. У видов с высокой смертностью в раннем возрасте возможно обратное соотношение.)

Продолжая «страховочную» аналогию, можно рассматривать индивидуумов как лиц, страхующих жизнь. Данный индивидуум может рискнуть известной частью своего состояния на страховку жизни другого человека. При этом он принимает во внимание коэффициент своего родства с этим человеком, а также его «надежность» в смысле его ожидаемой продолжительности жизни по сравнению со своей собственной. Строго говоря, следовало бы заменить «ожидаемую продолжительность жизни» на «ожидаемую репродуктивность» или еще строже — на «общую способность благоприятствовать собственным генам в течение будущей жизни». В таком случае для эволюции альтруистичного поведения суммарный риск для альтруиста должен быть меньше, чем суммарный выигрыш для реципиента, умноженный на коэффициент родства. Риск и выигрыш следует вычислять упомянутым выше сложным способом, применяемым страховыми обществами.

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления, да еще в спешке [6.6]! Даже великий матбиолог Дж. Холдейн (в опубликованной в 1955 г. работе, где он предвосхитил концепцию Гамильтона, постулировав распространение гена, детерминирующего спасение тонущих родственников) заметил: «…в тех двух случаях, когда я вытаскивал из воды с минимальнейшим риском для себя людей, которые могли бы утонуть, у меня не было никакого времени на подобные вычисления». К счастью, как это хорошо знал Холдейн, предполагать, что машины выживания сознательно производят в уме вычисления, нет необходимости. Совершенно так же, как мы применяем логарифмическую линейку, не сознавая, что мы на самом деле используем логарифмы, животное может быть запрограммировано таким образом, что оно ведет себя, как если бы оно производило сложные вычисления.

Вообразить это не столь уж сложно, как может показаться. Когда человек подбрасывает мяч высоко в воздух и вновь ловит его, он ведет себя так, как если бы он решал систему дифференциальных уравнений, определяющих траекторию мяча. Он может не знать, что такое дифференциальное уравнение, и не стремиться узнать, но это никак не отражается на его искусстве играть с мячом. На каком-то подсознательном уровне происходит что-то, равноценное математическим вычислениям. Точно так же, когда человек принимает трудное решение, предварительно взвесив все «за» и «против» и все последствия своего решения, которые он может вообразить, его действия функционально равноценны вычислению «взвешенной суммы», производимому компьютером.

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски — знаком минус; все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем прежде всего не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (т. е. он содержит, как это совершенно очевидно, 100%-собственных генов), риски и выигрыши для самого себя вообще не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом:

Чистый выигрыш при данном типе поведения = Выигрыш для себя – Риск для себя + 1/2 Выигрыша для брата – 1/2 Риска для брата + 1/2 Выигрыша для другого брата – 1/2 Риска для другого брата + 1/8 выигрыша для двоюродного брата – 1/8 риска для двоюродного брата + 1/2 Выигрыша для ребенка – 1/2 Риска для ребенка + и т. д.

Результатом такого суммирования выигрышей будет число, называемое оценкой чистого выигрыша при данном типе поведения. Затем модельное животное вычисляет эквивалентную сумму для каждого альтернативного типа поведения, имеющегося в его репертуаре. Наконец, оно выбирает и реализует поведение того типа, при котором достигается наивысший чистый выигрыш. Даже если все оценки оказываются со знаком минус, оно выбирает наилучшую форму поведения, т. е. связанную с наименьшим риском. Помните, что любое позитивное действие сопряжено с затратами энергии и времени, которые можно было бы израсходовать на другие дела. Если ничегонеделанье оказывается тем «поведением», при котором достигается наивысший выигрыш, то модельное животное будет бездельничать.

Это в высшей степени упрощенный пример, в данном случае выраженный в форме субъективного монолога, а не компьютерной модели. Предположим, что я животное, нашедшее в лесу место, где растет 8 г.ибов. Прикинув их питательную ценность и несколько уменьшив оценку ввиду наличия риска, хотя и очень незначительного, что они, возможно, ядовитые, я решил, что каждый гриб «стоит» +6 единиц (единицы — произвольно установленные выигрыши, как в гл. 5). Грибы такие большие, что я мог бы съесть лишь три из них. Должен ли я известить кого-то другого о своей находке? Кто может меня услышать? Мой брат B (коэффициент его родства со мной = 1/2), двоюродный брат C (коэффициент родства = 1/8) и D (он мне, в общем, не родственник; коэффициент его родства со мной выражается такой малой величиной, что ее практически можно приравнять к нулю). Если я промолчу о своей находке, то мой чистый выигрыш составит +6 за каждый из трех съеденных мной грибов, т. е. всего +18. Чтобы оценить чистый выигрыш в том случае, если я объявлю о своей находке, нужно будет произвести некоторые расчеты. Восемь грибов придется разделить поровну на четверых. Выигрыш, который я получу от двух съеденных мной самим грибов, по +6 единиц каждый, составит +12. Но я получу также некоторый выигрыш от того, что мой родной и двоюродный братья съедят по два гриба каждый, поскольку у меня с ними есть общие гены. Мой суммарный выигрыш составит (1x12) + (1/2x12) + (1/8x12) + (0x12) = 19 1/2. Соответствующий чистый выигрыш при эгоистичном поведении был равен +18. Результаты практически совпадают, но приговор ясен. Я должен подать сигнал, что найдена пища; проявленный мной альтруизм в этом случае обернется выигрышем для моих эгоистичных генов.

Я упростил ситуацию, сделав допущение, что индивидуальное животное вычисляет, какой образ действий будет оптимальным для его генов. На самом же деле генофонд пополняется генами, под действием которых тела ведут себя так, как если бы они производили подобные вычисления.

Во всяком случае эти вычисления — лишь весьма предварительное первое приближение к тому, какими они должны быть в идеале. Мы пренебрегли многими факторами, в том числе возрастом производящих эти вычисления индивидуумов. Кроме того, если я перед тем, как обнаружить грибы, плотно поел, чистый выигрыш от оповещения о моей находке будет выше, чем если бы я был голоден. В лучшем из миров возможностям прогрессивного усовершенствования вычислений нет конца. Но реальная жизнь протекает не в лучшем из миров. Мы не можем ожидать, что реальные животные, выбирая оптимальное решение, будут учитывать абсолютно все детали. Путем наблюдений и экспериментов в природных условиях нам предстоит выяснить, сколь близко на самом деле реальные животные подходят к достижению идеального анализа расходов-доходов.

Просто для того, чтобы убедить себя, что субъективные примеры не слишком сильно увели нас в сторону, вернемся ненадолго к генному языку. Живые тела это машины, запрограммированные теми генами, которые выжили. Гены, которые выжили, сумели сделать это в условиях, которые в среднем были характерны для среды данного вида. Поэтому оценки расходов и доходов основаны на прошлом «опыте», точно так же, как у человека, принимающего решение. Однако опыт в этом случае означает опыт гена или, точнее, условий, в которых ген сумел выжить в прошлом. (Поскольку гены, кроме того, наделяют машины выживания способностью к научению, можно сказать, что некоторые оценки расходов-доходов производились также на основе индивидуального опыта.) До тех пор, пока условия изменяются не слишком сильно, эти оценки будут оставаться надежными оценками и машины выживания будут в среднем принимать верные решения. В случае коренных изменений условий машины выживания будут склонны принимать ошибочные решения и их гены будут расплачиваться за это. Именно так оно и бывает: если человек принимает решения, основанные на устаревшей информации, то эти решения обычно оказываются ошибочными.

В оценки коэффициентов родства также могут вкрасться ошибки и неточности. До сих пор в наших упрощенных расчетах мы исходили из того, что машинам выживания как бы известно, кто связан с ними родством и каков коэффициент этого родства. В реальной жизни такая твердая уверенность иногда существует, но чаще коэффициент родства можно оценить лишь как некую среднюю величину. Допустим, например, что A и B могут быть с равной вероятностью либо единоутробными, либо родными братьями. Их коэффициент родства равен либо 1/4, либо 1/2, но поскольку нам не известно, являются ли они единоутробными или родными братьями, эффективно можно использовать только среднее значение, т. е. 3/8. Если же твердо известно, что мать у них одна, но вероятность общего отца составляет всего 1 к 10, то можно на 90% быть уверенными в том, что они единоутробные братья и на 10%-что они родные братья; эффективный коэффициент родства составляет в этом случае (1/10 x 1/2) + (9/10 x 1/4) = 0,275.

Но говоря о 90%-ной уверенности, кого мы имеем в виду? Натуралиста, который обрел ее после длительных полевых исследований, или самих животных? При благоприятных обстоятельствах это почти одно и то же. Для того чтобы понять это, нам надо подумать, каким образом животные могли бы распознавать своих близких родственников[6.7].

Мы знаем, кто наши родственники, потому что нам сказали об этом, потому что у них есть имена, потому что у нас существуют формальные браки, а также соответствующие записи и просто хорошая память. Многие социальные антропологи поглощены выяснением «кровного родства» в обществах, которые они изучают. Они имеют при этом в виду не подлинное генетическое родство, а субъективные и культурные представления о родстве. В обычаях и ритуальных обрядах различных племен придается большое значение кровному родству; широко распространено поклонение предкам, во многих областях жизни доминируют чувство долга и верность семье. Кровную месть и войны между кланами легко интерпретировать в свете генетической теории Гамильтона. Запрет на кровосмешение доказывает осознание человеком значения кровного родства, хотя генетические преимущества, которые дает этот запрет, не имеют никакого отношения к альтруизму; он, вероятно, связан с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.) [6.8].

Как дикие животные могли бы «знать», кто приходится им родственниками, или, иными словами, каким правилам они должны следовать в своем поведении, чтобы его косвенным эффектом была именно способность распознавать кровных родственников? Нужно, чтобы животные получали от своих генов какое-то простое правило действия, правило, которое не связано с полным осознанием конечной цели данного действия, но которое тем не менее работает по крайней мере при средних условиях. Нам, людям, знакомы эти правила и они столь могущественны, что если мы не слишком дальновидны, то подчиняемся правилу как таковому, даже когда прекрасно видим, что оно не сулит ни нам, ни кому-либо другому ничего хорошего. Например, некоторые правоверные евреи или мусульмане готовы лучше голодать, чем нарушить запрет на свинину. Каковы те простые практические правила, которым могли бы подчиняться животные и косвенный эффект которых при нормальных условиях направлен на благо их близких родственников?

Если бы животные были склонны к альтруизму по отношению к индивидуумам, сходным с ними физически, они могли бы косвенно приносить своим родственникам некоторую пользу. Многое зависело бы от конкретных особенностей данного вида. Такое правило в любом случае привело бы лишь к «верным» решениям в статистическом смысле. Если бы условия менялись (если, например, данный вид стал бы жить гораздо более обширными группами), это могло бы приводить к ошибочным решениям. Можно допустить, что расовые предрассудки — это иррациональное обобщение выработавшейся в процессе кин-отбора тенденции данного индивидуума идентифицировать себя с индивидуумами, физически сходными с собой, и плохо относиться к индивидуумам, имеющим иной внешний облик.

Представитель вида, члены которого перемещаются мало или перемещаются небольшими группами, имеет хорошие шансы на то, что каждый случайно встретившийся ему индивидуум является его довольно близким родственником. В этом случае правило «Относись хорошо к каждому члену данного вида, которого ты встретишь», могло бы иметь положительную ценность для выживания в том смысле, что ген, предрасполагающий своих носителей подчиняться этому правилу, мог бы стать более многочисленным в генофонде. Может быть, именно по этой причине так часты сообщения об альтруистическом поведении в стадах обезьян и китов. Киты и дельфины тонут, если они не имеют возможности дышать воздухом. Неоднократно наблюдали, как детенышей китов и раненых животных, которые были не в состоянии сами подплыть к поверхности воды, поддерживали товарищи по стае, спасая их от гибели. Мы не знаем, имеются ли у китов какие-то способы распознавать своих близких родственников, но это, возможно, не имеет значения. Быть может, полная вероятность того, что случайный член данного стада — родственник спасающих его индивидуумов, так велика, что затраты на альтруизм оправдывают себя. Между прочим, известен по крайней мере один хорошо документированный случай спасения тонущего человека диким дельфином. Можно считать, что в этом случае правило спасения тонущих членов своего стада дало осечку. Содержащееся в этом правиле «определение» члена стада, который тонет, могло бы звучать примерно следующим образом: «Нечто длинное, барахтающееся, задыхающееся у поверхности воды».

Сообщалось, что взрослые самцы павианов рискуют жизнью, защищая остальных членов стада от хищников, например от леопардов. Вполне возможно, что у каждого взрослого самца имеется в среднем довольно большое число генов, имеющихся также у других членов данного стада. Ген, который «говорит» своему носителю нечто вроде: «Тело, если ты оказалось взрослым самцом, защищай это стадо от леопардов», может стать более многочисленным в данном генофонде. Прежде чем покончить с этим часто приводимым примером, справедливости ради следует добавить, что по крайней мере один уважаемый автор сообщает совершенно иные факты. По ее данным, при появлении леопарда первыми скрываются за горизонтом именно взрослые самцы.

Цыплята кормятся вместе, следуя всем выводком за матерью. Их звуковые сигналы делятся на два главных типа. Кроме громкого пронзительного писка, о котором я уже упоминал, они во время кормежки мелодично щебечут. На писк, означающий призыв о помощи, обращенный к матери, остальные цыплята не реагируют. Однако щебетанье привлекает их внимание. Это означает, что когда один цыпленок находит пищу, к ней устремляются также и остальные цыплята: в свете рассмотренного ранее гипотетического примера щебетанье -это сообщение о наличии пищи. Как и в том случае, очевидный альтруизм цыплят можно объяснить с помощью кин-отбора. Поскольку в природе все цыплята данного выводка — родные братья и сестры, ген, детерминирующий издавание этого сигнала, будет распространяться, при условии, что потери для издающего сигнал цыпленка меньше, чем половина чистого выигрыша для остальных цыплят. Поскольку выгода распределяется между всеми членами выводка, число которых обычно больше двух, нетрудно представить себе, что это условие выполняется. Конечно, правило нарушается, если речь идет о домашних условиях или о фермах, где кур заставляют насиживать не только свои, но иногда даже индюшачьи или утиные яйца. Однако вряд ли курица или ее цыплята догадываются об этом. Их поведение формировалось в условиях, обычно преобладающих в природе, а в природе, как правило, не сталкиваешься с чужаками в своем гнезде.

Время от времени, однако, такого рода ошибки возникают в природных условиях. У видов, которые живут стадами или. стаями, осиротевший детеныш или птенец может быть усыновлен чужой самкой, скорее всего той, которая потеряла собственного детеныша. Те, кто наблюдает за поведением обезьян, иногда называют такую самку «теткой». В большинстве случаев не удается обнаружить никаких признаков, указывающих на то, что она в самом деле тетка или вообще родственница: если бы наблюдатели больше знали о генах, они никогда не применяли бы так необдуманно столь серьезное слово, как «тетка». Быть может, однако, в большинстве случаев усыновление, несмотря на всю его трогательность, следует рассматривать как некий сбой в заложенном природой порядке вещей, поскольку великодушная самка, заботясь о сироте, не приносит никакой пользы собственным генам. Она попусту расходует время и энергию, которые могла бы вкладывать в жизнь своих родственников, в особенности собственных детей. По-видимому, эта ошибка возникает слишком редко, чтобы естественный отбор «снизошел» до изменения правила, сделав материнский инстинкт более избирательным. Между прочим, во многих случаях сироту никто не усыновляет и, предоставленный самому себе, он гибнет.

Есть пример ошибки, столь экстремальный, что вы, возможно, предпочтете считать его не ошибкой, а фактом, свидетельствующим против теории эгоистичного гена. Речь идет об убитых горем самках обезьян, лишившихся собственных детенышей: наблюдались случаи, когда такая мать крала детеныша у другой самки и ухаживала за ним. Я рассматриваю это как двойную ошибку, поскольку приемная мать не только попусту теряет время: она при этом снимает с самки-соперницы все тяготы, связанные с выращиванием детеныша, давая ей возможность быстрее родить другого малыша. Этот пример представляется мне очень серьезным и заслуживает исчерпывающего анализа. Необходимо выяснить, как часто возникают подобные ситуации, какова средняя степень родства между приемной матерью и детенышем и каково истинное отношение к этому родной матери — ведь в конечном счете ей выгодно, чтобы ее детеныша усыновили; а может быть, матери намеренно пытаются обмануть молодых неопытных самок, заставляя их усыновлять своих детенышей? (Высказывались также предположения, что самки, усыновляющие или крадущие чужих детенышей, извлекают из этого выгоду, приобретая ценный опыт в искусстве выращивания детенышей.)

Примером преднамеренно созданной «осечки» материнского инстинкта служат кукушки и некоторые другие гнездовые паразиты-птицы, откладывающие свои яйца в гнезда каких-нибудь других видов. Кукушки используют в своих интересах правило, заложенное в птичьих родителей: «Относись хорошо к любой маленькой птице, сидящей в построенном тобой гнезде». Если исключить кукушек, то это правило обычно приводит к желаемому результату, ограничивая проявления альтруизма ближайшими родственниками, поскольку гнезда чаще всего расположены достаточно далеко одно от другого, так что все, кто оказались в гнезде данной птицы, почти наверное являются ее собственными птенцами. Взрослые самки серебристой чайки не отличают свои яйца от чужих и безмятежно насиживают яйца других чаек и даже деревянные яйца, подложенные экспериментатором. В природных условиях распознавание яиц не имеет для чаек значения, потому что яйца не могут откатиться достаточно далеко и оказаться вблизи одного из соседних гнезд, находящихся на расстоянии нескольких метров. Чайки узнают, однако, собственных птенцов; это существенно, поскольку, в отличие от яиц, птенцы бродят вокруг гнезда и легко могут очутиться у соседнего гнезда, что нередко приводит к фатальным результатам (см. гл. 1).

В отличие от чаек кайры узнают свои яйца по характеру расположения на скорлупе темных пятнышек и активно выбирают их для насиживания. Это, вероятно, связано с тем, что кайры гнездятся на плоских камнях, где яйца могут раскатываться и перемешиваться с яйцами из других кладок. Но почему же, спрашивается, кайры стараются опознать свои яйца и насиживать только их? Ведь если бы каждая птица заботилась о том, чтобы насиживать чье-то яйцо, то не имело бы значения, сидит ли каждая данная самка на собственных или на чужих яйцах. Так рассуждает приверженец группового отбора. Посмотрим, к чему привело бы образование такого кружка группового насиживания. В среднем кладка кайры состоит из одного яйца. Это означает, что для успешной деятельности кружка взаимного насиживания каждый взрослый индивидуум должен был бы сидеть на одном яйце. Допустим теперь, что кто-то сжульничает и вместо того, чтобы тратить время на высиживание, использует его для откладки новых яиц. Прелесть системы состоит в том, что другие, более альтруистичные индивидуумы будут заботиться об этих яйцах вместо той, которая их отложила. Они будут честно следовать правилу: «Увидев около своего гнезда заблудившееся яйцо, подкати его к гнезду и садись на него». Таким образом, ген, детерминирующий такую систему, распространился бы в популяции и милый дружественный кружок высиживания птенцов распался бы.

Ну, а если честные птицы в ответ на это отказались бы поддаваться шантажу и твердо решили насиживать одно и только одно яйцо? Это расстроило бы планы жуликов: они увидели бы, что их собственные яйца лежат на скалах и никто их не насиживает. Это быстро образумило бы их. Увы, этого не произойдет. Ведь мы постулируем, что насиживающие птицы не отличают одни яйца от других; поэтому, если добропорядочные птицы введут эту систему в действие с тем, чтобы противостоять жульничеству, яйца, оказавшиеся беспризорными, с равной вероятностью могут оказаться как их собственными, так и яйцами жуликов. Жулики тем не менее останутся в выигрыше, потому что они отложат больше яиц и оставят больше выживших потомков. Единственный способ, с помощью которого честная чайка могла бы победить жуликов, это активно проявлять пристрастие к собственным яйцам. Иными словами, отказаться от альтруизма и блюсти собственные интересы.

Пользуясь языком Мэйнарда Смита, «стратегия» альтруистичного усыновления не является эволюционно стабильной стратегией. Она нестабильна в том смысле, что не может быть усовершенствована эгоистичной стратегией противника, состоящей в откладывании большего числа яиц, чем положено каждой особи, и последующем отказе насиживать их. Эта эгоистичная стратегия в свою очередь нестабильна, потому что нестабильна эксплуатируемая ею альтруистичная стратегия, и она исчезнет. Единственная эволюционно стабильная стратегия для кайры состоит в том, чтобы узнавать свое собственное яйцо и насиживать только его. Именно это она и делает.

Виды певчих птиц, на которых паразитируют кукушки, наносят ответный удар, но в данном случае не путем узнавания собственных яиц по общей окраске и размерам, а инстинктивно оказывая предпочтение яйцам с видоспецифичньши пятнышками. Поскольку им не грозит паразитирование со стороны членов их собственного вида, это эффективно [6.9]. Однако кукушки в свою очередь отвечают на это тем, что их яйца становятся все более и более похожими на яйца вида-хозяина по окраске, величине и пятнышкам. Это пример обмана, который нередко удается. Такая эволюционная гонка вооружений довела мимикрию яиц кукушки до совершенства. Можно предположить, что некоторая доля яиц и птенцов кукушки бывает обнаружена, а те, которые остаются незамеченными, выживают и откладывают яйца, т. е. создают следующее поколение кукушек. Так гены, детерминирующие более эффективный обман, распространяются в генофонде кукушек. Подобным же образом птицы-хозяева, обладающие достаточно острым зрением, чтобы обнаружить любое самое незначительное упущение в мимикрии яиц кукушек, это именно те птицы, которые вносят наибольший вклад в генофонд собственного вида. Таким образом они передают свои зоркие и скептические глаза следующему поколению. Это служит хорошим примером того, как естественный отбор может обострить активную дискриминацию, направленную в данном случае против другого вида, представители которого изо всех сил стараются преодолеть эту дискриминацию.

Вернемся теперь к сопоставлению той «оценки» степени родства с другими членами своей группы, которую дает само животное, с оценкой, сделанной опытным полевым натуралистом. Брайан Бертрам (Brian Bertram) посвятил много лет изучению образа жизни львов в Национальном парке Серенгети. На основании имеющихся у него данных о биологии размножения львов он оценил среднюю степень родства между индивидуумами, входящими в состав прайда. Его данные сводятся к следующему. Типичный прайд состоит из семи взрослых самок — наиболее постоянных членов прайда — и двух взрослых самцов, которые бродяжничают. Примерно половина самок приносят котят в одни и те же сроки и выращивают их совместно, так что определить, кому именно принадлежит данный детеныш, затруднительно. Самка, как правило, приносит трех львят. Отцовские обязанности обычно равномерно распределяются между взрослыми самцами, входящими в прайд. Молодые самки остаются в прайде, заменяя старых, которые умирают или уходят. Молодых самцов изгоняют из прайда довольно рано. Достигнув зрелости, они бродят небольшими группами или парами, прибиваясь то к одной, то к другой стае, но, как правило, не возвращаются в родной прайд.

На основании этих и других фактов и допущений удается вычислить среднюю оценку степени родства между двумя индивидуумами из типичного львиного прайда. Бертрам считает, что она равна 0,22 для двух случайно взятых самцов и 0,15 — для таких же самок. Иными словами, степень родства между самцами данного прайда в среднем чуть меньше, чем между единокровными или единоутробными братьями, а между самками — несколько меньше, чем между двоюродными сестрами.

Разумеется, любые два индивидуума могут оказаться родными братьями, но Бертрам не располагал никакими возможностями для выявления этого, и можно смело утверждать, что львам это также неизвестно. Вместе с тем средние оценки, полученные Бертрамом, в некотором смысле доступны и самим львам. Если эти оценки действительно типичны для среднего львиного прайда, то в таком случае любой ген, предрасполагающий самцов вести себя по отношению к другим самцам так, как если бы они были почти полубратьями, должен иметь положительное значение для выживания. Любой ген, который зашел бы слишком далеко, заставляя самцов вести себя по отношению друг к другу так, как это подобает скорее родным братьям, в среднем был бы «оштрафован», точно так же, как и ген, определяющий недостаточно дружеские отношения, как, например, между троюродными братьями. Если обстоятельства жизни львов таковы, как их описывает Бертрам, и, что столь же важно, если они были такими на протяжении многих поколений, то можно ожидать, что естественный отбор благоприятствовал уровню альтруизма, соответствующему средней степени родства в типичном прайде. Именно это я имел в виду, когда говорил, что оценки родства, сделанные животным и опытным натуралистом, могут оказаться довольно близкими [6.10].

Итак, мы приходим к выводу, что «подлинное» родство, возможно, играет меньшую роль в эволюции альтруизма, чем самая точная оценка родства, на которую способны животные. Этот факт, вероятно, может послужить ключом к пониманию того, почему родительская забота о потомстве настолько чаще встречается в природе и гораздо более самоотверженна, чем забота братьев и сестер друг о друге, а также того, почему животные могут ценить себя выше, чем даже нескольких братьев. То, что я хочу сказать, сводится к следующему: помимо коэффициента родства, мы должны учитывать нечто вроде индекса «уверенности». Несмотря на то, что генетическая близость между родителями и детьми не теснее, чем между братьями и сестрами, уверенность в ней больше. Обычно человек гораздо более уверен в том, что сын или дочь — это действительно его дети, чем в том, что его брат в самом деле приходится ему братом. И еще больше он уверен в том, кем является он сам!

Мы уже рассказали о жуликах среди кайр, а в последующих главах еще вернемся к вопросу о лгунах, жуликах и эксплуататорах. В мире, где постоянно находятся индивидуумы, которые ищут случая использовать альтруизм, возникший в результате кин-отбора, в собственных интересах, каждая машина выживания должна установить, кому она может верить, в ком она может быть действительно уверена. Если B в самом деле мой младший брат, тогда я должен заботиться о нем вполовину меньше, чем я забочусь о себе, и совершенно так же, как я забочусь о своем собственном ребенке. Но могу ли я быть уверен в нем так же, как я уверен в собственном ребенке? Откуда я знаю, что это мой младший брат?

Если C — мой идентичный близнец, то я должен заботиться о нем вдвое больше, чем я забочусь о любом из собственных детей; в сущности, я должен ценить его жизнь не меньше, чем свою собственную [6.11]. Но могу ли я быть уверенным, что он действительно мой близнец? Конечно, он похож на меня, но ведь может случиться, что мы просто несем одинаковые гены, детерминирующие черты лица. Нет, я не отдам за него собственную жизнь, потому что хотя и возможно, что он содержит 100% моих генов, мне совершенно точно известно, что я несу 100% своих генов, а поэтому представляю для самого себя большую ценность, чем он. Я — тот единственный индивидуум, в котором любой из моих эгоистичных генов может быть совершенно уверен. И хотя в идеале ген, определяющий индивидуальный эгоизм, может быть вытеснен геном-соперником, определяющим альтруистичное спасение по крайней мере одного идентичного близнеца, двух детей или братьев или не менее четырех внуков и т. п., первый ген обладает таким огромным преимуществом, как полная уверенность в индивидуальной идентичности. Его соперник-ген альтруизма по отношению к кровным родственникам рискует либо допускать в отношении идентичности действительно случайные ошибки, либо попадаться в ловушки, намеренно подстроенные обманщиками и паразитами. Поэтому нам следует ожидать, что индивидуальный эгоизм распространен в природе гораздо шире, чем можно было бы предсказать на основании одного лишь генетического родства.

У многих видов мать может быть более уверена в своих потомках, чем отец. Мать откладывает видимое глазом, осязаемое яйцо или же вынашивает детеныша. У нее прекрасные шансы знать наверное носителей ее собственных генов. Бедный отец гораздо меньше застрахован от обмана. Следует ожидать поэтому, что отцы будут прилагать меньше усилий, чем матери, в заботе о потомках. В гл. 9 («Битва полов») мы увидим, что есть и другие причины ожидать этого. Точно так же бабушки с материнской стороны могут быть гораздо более уверены в своих внуках, чем бабушки со стороны отца, и можно ожидать, что они будут проявлять больше альтруизма, чем последние. Это объясняется тем, что они могут быть уверены во внуках, рожденных их дочерьми, тогда как сыновья могут оказаться рогоносцами. Деды с материнской стороны уверены в своих внуках совершенно в такой же степени, как бабушки с отцовской стороны, потому что оба они могут испытывать уверенность в отношении одного поколения и неуверенность в отношении другого. Точно так же дядья с материнской стороны должны быть более заинтересованы в благополучии племянников и племянниц, чем дядья с отцовской стороны, и в общем должны быть столь же альтруистичны, как и тетки. В самом деле в обществе, в котором супружеская неверность широко распространена, дядья с материнской стороны должны быть более альтруистичны, чем «отцы», поскольку у них больше оснований быть уверенными в своем родстве с ребенком. Они знают, что мать ребенка уж по крайней мере их единоутробная сестра. «Законный» же отец не знает ничего. Я не располагаю никакими данными по этому поводу, но я высказываю эти соображения в надежде, что такие данные могут быть у кого-то другого или же кто-то займется их поисками. В частности, интересные сведения могут нам сообщить социальные антропологи [6.12].

Тот факт, что родительский альтруизм гораздо более обычен, чем братский, представляется разумным объяснять с точки зрения «проблемы идентификации». Однако при этом не получает объяснения сама асимметрия взаимоотношений родители/дети. Родители больше заботятся о своих детях, чем дети о своих родителях, хотя генетические взаимосвязи симметричны и уверенность в степени родства одинаково велика в обоих направлениях. Одна из причин состоит в том, что родители чисто практически имеют больше возможностей помогать своим детям, поскольку они старше и обладают большим жизненным опытом. Даже если ребенок захотел бы кормить своих родителей, у него нет для этого материальных возможностей. Во взаимоотношениях родители/дети есть и другая асимметрия, отсутствующая во взаимоотношениях братья/сестры. Дети всегда моложе своих родителей. Это часто, хотя и не всегда, означает, что ожидаемая продолжительность жизни у них больше. Как я уже подчеркивал выше, ожидаемая продолжительность жизни — очень важная переменная, которую в этом лучшем из миров животные должны учитывать в своих «вычислениях», когда они «решают», стоит им или нет проявлять альтруизм. Если для данного вида средняя ожидаемая продолжительность жизни у детей выше, чем у родителей, то любой ген, детерминирующий альтруизм детей, оказывается в невыгодном положении. Он. будет детерминировать альтруистичное самопожертвование, направленное на благо индивидуумов, которые ближе к смерти от старости, чем сам альтруист. В отличие от этого ген родительского альтруизма получит при этом соответствующее преимущество, постольку поскольку это касается ожидаемой продолжительности жизни.

Иногда говорят, что кин-отбор прекрасен в теории, однако реальные примеры его действия очень немногочисленны. Такое мнение может высказывать лишь тот, кто не понимает, в чем состоит смысл кин-отбора. На самом деле все примеры заботы родителей о потомстве и его защиты, а также связанные с этим органы (млечные железы, сумки кенгуру и т. п.) — это примеры действия кин-отбора в природе. Критики кин-отбора, конечно, знакомы с широко распространенной в природе заботой родителей о потомстве, но они не могут понять, что эта забота — такой же пример кин-отбора, как проявление альтруизма братья/сестры. Когда эти критики требуют привести им примеры, они имеют в виду, что это должны быть примеры, не относящиеся к заботе о потомстве, а таких примеров действительно немного. Я выдвинул ряд возможных причин этого. Я мог бы привести множество примеров альтруизма братья/сестры. Но я не хочу этого делать, так как это подкрепило бы ошибочное представление (которое, как мы видели, поддерживает Уилсон), что кин-отбор касается именно взаимоотношений иного типа, нежели взаимоотношения родители/дети.

Причины возникновения этой ошибки в значительной степени исторические. Эволюционное преимущество, которое дает забота о потомстве, столь очевидно, что нам не надо было дожидаться, пока Гамильтон укажет нам на него. Это было понятно со времен Дарвина. Когда Гамильтон продемонстрировал генетическую равноценность других взаимоотношений и их эволюционное значение, он, естественно, делал упор на эти другие взаимоотношения. В частности, он приводил в качестве примеров таких общественных насекомых, как муравьи и пчелы, у которых особенно важную роль играют отношения сестра/сестра, как мы это увидим в одной из последующих глав. Я даже слышал от некоторых людей, что, как им казалось, теория Гамильтона относится только к общественным насекомым.

Если кто-то не хочет соглашаться с тем, что забота о потомстве представляет собой пример кин-отбора в действии, то на него ложится бремя создания такой общей теории естественного отбора, которая предсказывала бы родительский альтруизм, но при этом не предсказывала бы альтруизм между родственниками по боковой линии. Я думаю, что это ему не удастся.


Примечания:



Глава 6. Генное братство

id="note6.1">

[6.1]

...я никогда не мог понять, почему этологи так пренебрегают этими работами.

Статьи Гамильтона, вышедшие в 1964 г., теперь уже не остаются без внимания. История пренебрежения этими статьями в прошлом и последующего их признания сама по себе представляет интересное количественное исследование — изучение конкретного примера включения «мима» в мимофонд. Я прослежу за развитием этого мима в примечаниях к гл. 11.

id="note6.2">

[6.2]

Допустим…, что мы рассматриваем гены, редко встречающиеся…

Допущение, что речь идет о гене, редко встречающемся в популяции в целом, было небольшой уловкой, облегчающей измерение коэффициента родства. Одно из главных достижений Гамильтона состояло в том, что его заключения не зависят от того, рассматриваем ли мы редкие или часто встречающиеся гены. Это оказалось тем аспектом теории, который люди воспринимают с трудом.

Проблема измерения коэффициента родства явилась камнем преткновения для многих из нас по следующей причине. Дело в том, что у любых двух представителей данного вида, независимо от того, принадлежат ли они к одной семье или нет, обычно более 90% всех генов одинаковые. Что же мы имеем в виду, когда говорим, что коэффициент родства между родными братьями составляет 1/2, а между двоюродными — 1/8? Только то, что у братьев одинакова 1/2 их генов помимо и сверх тех 90% (или сколько их там есть), которые в любом случае одинаковы у всех индивидуумов. Существует некий базисный коэффициент родства, общий для всех членов данного вида; в сущности, хотя и в меньшей степени, он распространяется и на другие виды. Следует ожидать, что альтруизм будет проявляться по отношению к индивидуумам, коэффициент родства с которыми выше базисного, каким бы он ни был.

В первом издании я обошел эту проблему, ограничив свои рассуждения редкими генами. Это допустимо, пока речь идет о них, но и только. Сам Гамильтон писал о генах, «идентичных по своему происхождению», но это также сопряжено с трудностями, как показал Алан Грейфен (Alan Grafen). Другие авторы даже не признавались в существовании какой-то проблемы, а просто говорили об абсолютных процентах общих генов, что несомненно является ошибкой. Такие небрежные рассуждения привели к серьезным недоразумениям. Например, один уважаемый антрополог в пылу ожесточенных нападок на «социобиологию», опубликованных в 1978 г., пытался утверждать, что если мы принимаем кин-отбор всерьез, то следовало бы ожидать, что все люди должны проявлять друг к другу альтруизм, так как число общих генов превышает у них 99%. Я кратко откликнулся на эту ошибку в моих «Двенадцати недопониманиях кин-отбора» (она идет в них под номером 5). Остальные 11 недоразумений также заслуживают разбора.

Алан Грейфен в своей статье «Геометрический взгляд на коэффициент родства», быть может, дал окончательное решение проблемы коэффициента родства. Я не буду пытаться излагать здесь эту статью.

В другой статье «Естественный отбор, кин-отбор и групповой отбор» Грейфен разъясняет еще одну часто встречающуюся и важную проблему, а именно — широко распространенное неверное использование гамильтоновской концепции «инклюзивной приспособленности». В ней рассмотрены также правильный и ошибочный способы подсчета потерь и преимуществ для генетических родственников.

id="note6.3">

[6.3]

...броненосцы… Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим.

Никаких дальнейших сведений о броненосцах не сообщалось, но стали известны некоторые новые эффектные данные о другой группе «клонируемых» животных — тлях. Уже давно известно, что тли размножаются как бесполым, так и половым путем. Когда вы видите на каком-нибудь растении скопление тлей, то есть шансы, что все они — члены одного клона идентичных самок, тогда как на соседнем растении могут находиться члены другого клона. Теоретически такие условия идеальны для эволюции альтруизма под действием кин-отбора. Подлинных примеров альтруизма тлей не было известно, однако, до тех пор, пока в 1977 г. японский специалист по тлям Сигеюки Аоки не обнаружил у одного японского вида тлей стерильных «солдат» — слишком поздно, чтобы это могло попасть в первое издание моей книги. Впоследствии Аоки обнаружил это явление у ряда различных видов, и он располагает надежными данными о том, что в процессе эволюции оно независимо возникало по крайней мере четыре раза в разных группах тлей.

Вкратце Аоки установил следующее. «Солдаты» у этих тлей — особая каста, отличающаяся от других по своей анатомии, подобно кастам таких знаменитых общественных насекомых, как муравьи. Это личинки, которые не достигают половой зрелости и поэтому стерильны. Как внешним видом, так и поведением они отличаются от других развивающихся одновременно с ними личинок, которым, однако, они генетически идентичны. Солдаты, как правило, крупнее; у них аномально большие передние ноги, что придает им сходство со скорпионами, а от головы отходят острые рога, направленные вперед. Они пользуются этим оружием, чтобы драться с хищниками и убивать их. В этих стычках они нередко гибнут, но если даже дело не доходит до гибели, мы вправе считать их генетически альтруистичными, потому что они стерильны.

Что же здесь происходит в плане эгоистичных генов? Аоки не уточняет, чем определяется превращение конкретных индивидуумов в стерильных солдат или в нормальных половозрелых тлей, но мы вправе утверждать, что это, очевидно, обусловлено каким-то фактором среды, поскольку стерильные солдаты и нормальные тли, находящиеся на каждом данном растении, генетически идентичны. Однако, по всей вероятности, существуют гены, определяющие способность переключаться под действием среды на тот или другой путь развития. Почему естественный отбор благоприятствовал этим генам, несмотря на то, что некоторые из них попадают в тела стерильных солдат и поэтому не передаются последующим поколениям? Да потому, что благодаря солдатам копии этих самых генов могли сохраниться в телах репродуктивных особей. Разумная причина здесь та же самая, что и у всех общественных насекомых (см. гл. 10), с той разницей, что у таких общественных насекомых, как муравьи и термиты, гены стерильных «альтруистов» имеют лишь статистическую вероятность помочь своим копиям, содержащимся в нестерильных репродуктивных индивидуумах. Солдаты у тлей принадлежат к тому же клону, что и их репродуктивные сестры, которых они благодетельствуют. В некоторых отношениях тли, которых изучает Аоки, служат превосходной иллюстрацией могущества идей Гамильтона, предоставленной самой природой.

Следует ли в таком случае принять тлей в тот особый клуб общественных насекомых, куда по традиции допускались только муравьи, пчелы, осы и термиты? Консервативные энтомологи могли бы забаллотировать их на разных основаниях. У тлей нет, например, долго-живущих старых маток. Кроме того, поскольку тли образуют настоящие клоны, они не более «социальны», чем клетки вашего тела. Это как бы одно животное, кормящееся на данном растении. Просто его тело разделено на физически обособленных тлей, и некоторые из них специализированы к выполнению защитных функций, подобно лейкоцитам в теле человека. Далее, «настоящие» общественные насекомые сотрудничают друг с другом, несмотря на то, что они не являются частями одного и того же организма, тогда как тли Аоки сотрудничают, потому что они составляют единый «организм». Я не могу серьезно относиться к этому семантическому вопросу. Мне кажется, что до тех пор, пока вы понимаете, что происходит среди муравьев, тлей и клеток человека, вы вольны называть или не называть их общественными по собственному усмотрению. Что касается лично меня, то я по ряду причин предпочитаю называть тлей Аоки общественными организмами, а не частями одного организма. У единого организма имеются определенные критические свойства, которыми обладают отдельные тли, но которых нет у клона тлей. Этот вопрос я разобрал в «Расширенном фенотипе», в главе, названной «Вновь открывая организм», а также в новой главе настоящей книги, названной «Длинная рука гена».

id="note6.4">

[6.4]

Кин-отбор никак нельзя считать особым случаем группового отбора.

Неразбериха с разницей между групповым отбором и кин-отбором не исчезла. Может быть, она даже усилилась. Мои замечания сохраняют силу и они актуальны вдвойне, если не считать того, что из-за небрежности в выборе слов я сам допустил ошибку на с. 102 первого издания этой книги. Я там писал (это одно из немногих мест, которые я изменил в тексте данного издания): «Мы просто ожидаем, что троюродные братья и сестры получат 1/16 того альтруизма, который получили бы потомки или сибсы». Как указал С. Альтман (S. Altmann), совершенно очевидно, что это не так. Это неверно по причине, не имеющей никакого отношения к вопросу, который я пытался обсуждать в то время. Если у данного альтруистичного животного есть пирог, которым он собирается поделиться со своими родственниками, то вовсе не обязательно давать каждому родственнику по куску, определяя величину кусков в соответствии с коэффициентом родства. Это привело бы к абсурду, поскольку все члены данного вида, не говоря о других видах, — это по меньшей мере его отдаленные родственники, каждый из которых мог бы претендовать на тщательно отмеренную крошку! И напротив, если поблизости оказался близкий родственник, то нет причин вообще давать дальнему родственнику хоть сколько-то пирога. Ввиду других осложнений, подобно закону убывающего плодородия, следовало бы отдать весь пирог самому близкому из имеющихся родственников. Я, конечно, хотел сказать следующее: «Мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов», как это сформулировано теперь на с. 95.

id="note6.5">

[6.5]

Он преднамеренно исключает потомков: они не считаются родственниками!

Я выразил надежду, что Э. Уилсон изменит свое определение кин-отбора в будущих публикациях, с тем чтобы включить потомков в число «родственников». Я с удовольствием сообщаю, что в книге «О человеческой природе» обидные слова «кроме потомков» были в самом деле опущены — я отнюдь не ставлю это себе в заслугу! Уилсон добавляет: «Хотя по определению потомки входят в число родственников, термин кин-отбор обычно используется только в том случае, если под его действие подпадают по крайней мере некоторые другие родственники-братья, сестры или родители». Это, к сожалению меткое, замечание, касающееся обычного употребления данного термина биологами, просто отражает тот факт, что многие биологи все еще не понимают «нутром», в чем истинная суть кин-отбора. Они продолжают ошибочно считать его чем-то излишним и мало понятным, лежащим за пределами обычного «индивидуального отбора» и над ним. Это не так. Кин-отбор следует из базисных допущений неодарвинизма, как ночь следует за днем.

id="note6.6">

[6.6]

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления…

Ошибочное представление о том, что кин-отбор требует наличия у животных совершенно нереалистичных способностей к вычислениям, неуклонно реанимируется одним поколением ученых за другим. Причем не только молодыми учеными. Книга «Употребление биологии и злоупотребление ею» известного социального антрополога Маршала Салинза (Marshall Sahlins) могла бы скромно оставаться в тени, если бы ее не провозгласили «уничижительной атакой» на «социобиологию». В контексте рассуждений о том, может ли кин-отбор действовать среди людей, следующая выдержка из этой книги чуть ли не слишком хороша, чтобы быть правдой:

Мимоходом следует отметить, что гносеологические проблемы, создаваемые отсутствием лингвистической базы для вычисления r, коэффициентов родства, вырастают в серьезный недостаток теорий кин-отбора. Дело в том, что дробные числа встречаются в очень немногих языках земного шара — лишь в индо-европейских и древних цивилизациях Ближнего и Дальнего Востока, а у так называемых примитивных народов отсутствуют вовсе. Охотники и собиратели растений не умеют считать дальше трех. Я воздерживаюсь от комментариев по еще более сложному вопросу: каким образом животные могут представить себе, почему r (двоюродные сибсы собственной персоной) = 1/8.

Я уже не в первый раз цитирую эту весьма откровенную выдержку и могу также привести свой собственный довольно безжалостный ответ на неё из статьи «Двенадцать недоразумений по поводу кин-отбора»:

К сожалению для Салинза, он поддался искушению «воздержаться от комментариев» по поводу того, как животные могут «представить себе» r. Сама абсурдность мысли, которую он пытался высмеять, должна была насторожить его. Раковина улитки — превосходная логарифмическая спираль, но где же улитка хранит свои таблицы логарифмов? Как она умудряется читать их, если хрусталик ее глаза не имеет «лингвистической базы», чтобы вычислить m, коэффициент преломления? А как зеленые растения «постигают» формулу хлорофилла?

Все дело в том, что если вы начнете думать об анатомии, физиологии или почти любом другом аспекте биологии, а не только о поведении, в таком плане, как Салинз, то вы неизбежно придете к той же самой несуществующей проблеме. Для полного описания эмбрионального развития любой частички тела животного или растения необходимо привлечение сложных математических рассуждений, но это не значит, что само это животное или растение должно быть хорошим математиком! У очень высоких деревьев обычно бывают мощные «контрфорсы», выступающие, подобно крыльям, во все стороны от основания ствола. У каждого данного вида, чем выше дерево, тем относительно крупнее эти подпорки. Общеизвестно, что форма и величина подпорок близки к экономически оптимальным, необходимым для того, чтобы дерево стояло прямо, хотя инженеру понадобились бы довольно сложные математические выкладки, чтобы продемонстрировать это. Салинзу или кому-нибудь другому никогда не пришло бы в голову усомниться в справедливости теории контрфорсов лишь по той причине, что дерево не обладает математической подготовкой, необходимой для проведения соответствующих вычислений. Почему же понадобилось поднимать эту проблему в связи с кин-отбором? Это не может быть вызвано тем, что в данном случае речь идет о поведении, а не об анатомии, потому что существует множество других примеров поведения (я имею в виду поведения, не создаваемого кин-отбором), которые Салинз с радостью признает, не выдвигая свое «гносеологическое» возражение; подумайте, например, о предложенном мной самим примере (с. 97) сложных вычислений, которые в известном смысле каждый из нас должен производить, когда он ловит мяч. Невольно призадумаешься: а не существуют ли социологи, которые целиком согласны с теорией естественного отбора вообще, но которые по совершенно посторонним причинам, коренящимся, возможно, в истории предмета их изучения, отчаянно стремятся найти любой недостаток — какой угодно — именно в теории кин-отбора?

id="note6.7">

[6.7]

...нам надо подумать, каким образом животные могли бы распознавать своих близких родственников… Мы знаем, кто наши родственники, потому что нам сказали об этом…

После того как было опубликовано первое издание книги, вся проблема узнавания родственников приобрела еще большую популярность. Животные, подобно людям, по-видимому, обладают замечательными способностями отличать родственных особей от неродственных, часто по запаху. В недавно вышедшей книге «Узнавание родственных особей у животных» подводятся итоги тому, что нам теперь известно. Глава о человеке, написанная Памелой Уэллс (Pamela Wells), показывает, что приведенное выше утверждение («Мы знаем, кто наши родственники, потому что нам сказали об этом») следует дополнить: имеются по крайней мере косвенные данные, указывающие на то, что мы способны использовать разного рода несловесные указания, в том числе запах пота наших родственников. Вся эта проблема, по-моему, вмещается в цитате, с которой П. Уэллс начинает свою главу:

«Всех благонадежных товарищей можно распознать по их альтруистичному благоуханию.»

(Э. Каммингз)

Родственникам может понадобиться узнавать друг друга не только по альтруистическим причинам. Они могут также пожелать подвести баланс между аутбридингом и инбридингом, как мы увидим в следующем примечании.

id="note6.8">

[6.8]

...с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.)

Летальным называют ген, убивающий своего носителя. Рецессивный леталь, подобно любому другому рецессивному гену, оказывает свое действие только в том случае, если он присутствует в двойной дозе. Рецессивные гены сохраняются в генофонде лишь благодаря тому, что большинство индивидуумов, у которых они имеются, содержат их в единичной дозе и поэтому никогда не испытывают их вредного воздействия. Каждый данный летальный ген встречается редко, потому что в тех случаях, когда его частота повышается, он начинает встречаться в паре с собственными копиями и убивает своих носителей. Тем не менее существует, вероятно, множество разного рода летальных генов, и не исключено, что все мы переполнены ими. Существующие оценки числа различных леталей, затаившихся в генофонде человека, варьируют. В некоторых книгах указывается, что на каждого человека приходится в среднем по два летальных гена. При браке случайного мужчины со случайной женщиной шансов на то, что у них окажутся одни и те же летали, пренебрежимо малы, и их дети не пострадают. Но при браке родных брата и сестры или отца со своей дочерью картина зловещим образом изменяется. Какими бы редкими ни были мои рецессивные летали и рецессивные летали моей сестры в популяции в целом, вероятность того, что мы с ней несем одни и те же летали, достаточно велика, чтобы вызывать беспокойство. Если произвести расчеты, то оказывается, что в случае моего брака с родной сестрой на каждый имеющийся у меня рецессивный ген один из восьми наших потомков либо родится мертвым, либо умрет в молодом возрасте. Между прочим, с генетической точки зрения смерть в юношеском возрасте даже еще более «летальна», чем мертворождение: мертворожденный ребенок не требует таких больших затрат времени и энергии от своих родителей. Но как бы мы ни относились ко всему этому, браки между близкими родственниками не просто вредны. Они потенциально катастрофичны. Отбор на активное избегание кровосмешения мог быть таким же сильным, как любое селективное давление, которое измеряли в природе.

Антропологи, возражающие против дарвиновских объяснений избегания кровосмешения, может быть, не подозревали, против какого сильного доказательства в пользу теории Дарвина они выступают. Их аргументы иногда бывают настолько слабыми, что напоминают об особом ходатайстве отчаявшейся защиты. Так, например, они обычно говорят: «Если бы дарвиновский отбор действительно вколотил в нас инстинктивное отвращение к кровосмешению, у нас не было бы нужды запрещать его. Запрет возник лишь потому, что люди испытывают тягу к кровосмешению. Таким образом, закон против кровосмешения не может нести „биологическую“ функцию, он имеет чисто „социальное“ значение». Это возражение напоминает следующее рассуждение: «Автомобилю, в сущности, не нужен противоугонный замок на системе зажигания, поскольку у него есть замки на дверцах. Поэтому замок на системе зажигания не может служить противоугонным устройством; он, вероятно, имеет какое-то чисто ритуальное значение». Кроме того, антропологи любят подчеркивать, что у различных цивилизаций существуют разного рода запреты и даже различные определения кровного родства. Они, по-видимому, считают, что это также подрывает стремление дарвинизма объяснить избегание кровосмешения. Можно было бы, однако, с тем же успехом говорить, что половое влечение не может быть адаптацией в дарвиновском понимании, потому что представители разных цивилизаций предпочитают совершать половой акт в разных позах. Мне представляется весьма вероятным, что избегание кровосмешения у человека, а также у животных, — результат сильного дарвиновского отбора.

Плохо вступать в брак не только с лицами, слишком близкими к вам генетически. Слишком отдаленные скрещивания также могут оказаться нежелательными вследствие генетической несовместимости. Где именно находится золотая середина, предсказать нелегко. Следует ли вступать в брак с двоюродным братом или сестрой? А с троюродными или четвероюродными? Патрик Бейтсон (Patrick Bateson) пытался выяснить для одного вида куропаток, в какой части этого диапазона лежат их предпочтения в отношении брачных партнеров. В экспериментальной установке под названием «Амстердамский аппарат» птицам предлагалось выбрать себе партнера из индивидуумов противоположного пола, выстроившихся за миниатюрными витринами. Они отдавали предпочтение двоюродным сибсам перед родными сибсами и неродственными птицами. Результаты дальнейших экспериментов позволяют считать, что молодые куропатки научаются узнавать особенности членов своего выводка, а затем, в более позднем возрасте, обычно выбирают брачных партнеров, которые достаточно, но не слишком похожи на этих собратьев.

Таким образом, куропатки, очевидно, избегают кровосмешения благодаря отсутствию у всех у них внутреннего вожделения по отношению к тем, с кем они выросли. Другие животные делают это, соблюдая законы сообщества, налагаемые ими правила расселения. Например, у львов молодых самцов выгоняют из родительского прайда, где остаются родственные им самки, которые могли бы соблазнить их, и эти самцы участвуют в размножении только в том случае, если им удается захватить другой прайд. В сообществах шимпанзе и горилл уходят из стада и ищут брачных партнеров в других группах обычно молодые самки. Оба типа расселения, так же как и систему, наблюдаемую у куропаток, можно обнаружить в различных цивилизациях вида Homo sapiens.

id="note6.9">

[6.9]

Поскольку [хозяевам кукушки] не грозит паразитирование со стороны членов их собственного вида…

Это, вероятно, относится к большинству видов птиц. Тем не менее не следует удивляться тому, что некоторые птицы паразитируют в гнездах собственного вида. И в самом деле, число видов, у которых обнаруживается это явление, постоянно увеличивается, особенно в последнее время, когда для установления родственных связей между видами стали применять новые методы молекулярной биологии. По теории эгоистичного гена это может происходить даже гораздо чаще, чем нам до сих пор было известно.

id="note6.10">

[6.10]

Кин-отбор у львов

Против взгляда Бертрама на роль кин-отбора как главной движущей силы сотрудничества у львов возражали К. Пакер (C. Packer) и А. Пьюзи (A. Pusey). По их мнению, реципрокный альтруизм по меньшей мере столь же пригоден в качестве объяснения сотрудничества у львов, как и кин-отбор. Вероятно, правы обе стороны. В гл. 12 подчеркивается, что реципрокность («око за око») может эволюционировать только в том случае, если изначально будет создан кворум реципрокаторов. Это обеспечивает достаточную вероятность того, что возможный партнер окажется реципрокатором. Родство, очевидно, представляет собой самый явный способ осуществления этого. Родственники, естественно, часто бывают похожи друг на друга, поэтому даже если в популяции в целом не достигается необходимая критическая частота, она может быть достигнута в пределах данной семьи. Быть может, сотрудничеству у львов было положено начало теми кин-эффектами, на которые указывает Бертрам, и это создало условия, необходимые для того, чтобы отбор благоприятствовал реципрокности. Разногласия относительно львов могут быть разрешены только на основании фактов, а факты, как всегда, говорят нам лишь о данном конкретном случае, не затрагивая общие теоретические положения.

id="note6.11">

[6.11]

Если C — мой идентичный близнец…

Теперь достаточно широко известно, что идентичные близнецы теоретически так же дороги вам, как дороги себе вы сами — в том случае, если есть гарантия, что это действительно идентичный близнец. Менее широко известно, что то же самое относится к матери, если гарантировано ее единобрачие. Если вы уверены, что ваша мать будет продолжать рожать детей от вашего отца и только от него, то ваша мать генетически так же дорога вам, как ваш идентичный близнец или вы сами. Подумайте о себе как о машине, производящей потомков. В таком случае ваша единобрачная мать-машина, производящая (родных) сибсов, а родные сибсы генетически столь же дороги вам, как и ваши собственные потомки. Конечно, при этом мы пренебрегаем всевозможными практическими соображениями. Например, ваша мать старше вас, хотя повышает это обстоятельство или понижает ее шансы на размножение в будущем по сравнению с вами самим, зависит от конкретных обстоятельств — общего правила здесь сформулировать нельзя.

В этих рассуждениях сделано допущение, что на вашу мать можно положиться в том смысле, что она будет продолжать рожать детей от вашего отца, а не от какого-то другого мужчины. Степень, до которой на нее можно положиться, зависит от системы спаривания данного вида. Если вы принадлежите к виду, для которого обычен промискуитет, то вы, очевидно, не можете быть уверены в том, что потомок вашей матери — ваш родной брат (или сестра). Даже в условиях идеального единобрачия существует одно неустранимое обстоятельство, из-за которого у вашей матери шансов меньше, чем у вас. Ваш отец может умереть. В этом случае ваша мать, как бы она этого ни желала, вряд ли могла бы продолжать рожать от него детей, не правда ли?

Так вот, на самом деле может. Совершенно очевидно, что обстоятельства, при которых это может произойти, представляют большой интерес для теории кин-отбора. Будучи млекопитающими, мы привыкли к мысли, что рождение следует за совокуплением по прошествии определенного и довольно короткого промежутка времени. Мужчина может стать отцом посмертно, но спустя не более девяти месяцев после своей смерти (если не считать оплодотворения замороженной спермой, хранящейся в банках спермы). Однако в нескольких группах насекомых самка хранит в себе в течение всей жизни запас спермы, оплодотворяя ею яйца год за годом, нередко в течение долгого времени после гибели своего брачного партнера. Если вы принадлежите к одному из таких видов, то вы можете потенциально быть совершенно уверены, что ваша мать будет продолжать оставаться надежным «генетическим шансом». У муравьев матка спаривается лишь во время единственного в ее жизни брачного полета, происходящего довольно рано в ее жизни. Затем она сбрасывает крылья и не спаривается больше никогда. Считается, что у многих видов муравьев матка во время брачного полета спаривается с несколькими самцами. Но если вы принадлежите к одному из тех видов, для самок которых характерно только единобрачие, то в генетическом отношении вы можете положиться на свою мать по меньшей мере с такой же уверенностью, как на самого себя. Главное преимущество быть молодым муравьем по сравнению с молодым млекопитающим состоит в том, что для вас не имеет значения, жив ваш отец или мертв (он почти наверное мертв!). Вы можете быть совершенно уверены, что сперма вашего отца продолжает жить после его смерти и что ваша мать может продолжать производить для вас родных братьев и сестер.

Отсюда следует, что если нас интересует эволюционное происхождение заботы, проявляемой братьями и сестрами друг о друге, и таких каст, как солдаты у насекомых, то мы должны отнестись с особым вниманием к тем видам, самки которых запасаются спермой на. всю жизнь. Что касается муравьев, пчел и ос, то они обладают некой генетической особенностью — гаплодиплоидией (см. гл. 10), которая, возможно, определила высокое развитие у них общественного образа жизни. Настоящим примечанием я хочу показать, что гаплодиплоидия — не единственный предрасполагающий фактор.

Хранение запаса спермы в течение всей жизни имеет, возможно, по меньшей мере столь же важное значение. В идеальных условиях эта черта может сделать мать такой же ценной в генетическом отношении и в той же степени заслуживающей «альтруистической» помощи, как и идентичный близнец.

id="note6.12">

[6.12]

...интересные сведения могут нам сообщить социальные антропологи.

Это замечание теперь вгоняет меня в краску. С тех пор я узнал, что социальным антропологам не только есть что сказать об «эффекте брата матери» — многие из них уже многие годы только об этом и говорят! «Предсказанный» мною эффект — эмпирический факт, наблюдаемый во многих цивилизациях, которые хорошо известны антропологам на протяжении ряда десятилетий. Кроме того, когда я высказал конкретную гипотезу, что «в обществе, в котором супружеская неверность широко распространена, дядья с материнской стороны должны быть более альтруистичны, чем „отцы“, поскольку у них больше оснований быть уверенными в своих родственных связях с ребенком» (с. 83), я, к сожалению, упустил из виду, что Ричард Александер (Richard Alexander) уже высказал эту мысль (примечание об этом я сделал при допечатке тиража первого издания этой книги). Гипотеза была проверена, в том числе самим Александером, с использованием количественных данных, опубликованных в антропологической литературе, и результаты оказались благоприятными.

>

Глава 7. Планирование семьи

id="note7.1">

[7.1]

Уинн-Эдвардс, на ком лежит главная ответственность за распространение идеи группового отбора…

К Уинн-Эдвардсу в общем относятся мягче, чем обычно принято относиться к еретикам в науке. Несмотря на явную ошибочность его высказываний, ему повсеместно ставят в заслугу (хотя лично я полагаю, что эта заслуга несколько преувеличивается) то, что он способствовал созданию более ясных представлений об отборе. Сам он великодушно отрекся от своих взглядов в 1978 г., написав:

В настоящее время все представители теоретической биологии пришли к единому мнению, что невозможно создать правдоподобные модели, с помощью которых медленно протекающий групповой отбор мог бы догонять гораздо более быстрое распространение эгоистичных генов, повышающих индивидуальную приспособленность. Поэтому я присоединяюсь к их точке зрения.

Нельзя не признать все благородство этого отречения, но, к сожалению, в своей последней книге он отрекся и от него.

Групповой отбор в том смысле, в каком мы все его долгое время понимали, теперь оказался даже в еще большей немилости у биологов, чем в то время, когда было опубликовано первое издание этой книги. Возможно, что вы считаете иначе: выросло целое поколение ученых, особенно в Америке, разбрасывающих направо и налево термин «групповой отбор». Под него подводят самые разные случаи, которые прежде (а для многих из нас и до сих пор) просто и ясно объяснялись как результат чего-то другого, скажем кин-отбора. Мне кажется бессмысленным раздражаться из-за подобных семантических вульгарностей. Между тем проблема группового отбора была весьма удовлетворительно разрешена десять лет назад Джоном Мэйнардом Смитом и другими; не может не вызывать досады, что разногласия, существующие в настоящее время между двумя поколениями и двумя нациями, вызваны на самом деле всего лишь различиями в словоупотреблении.

Особенно огорчительно, что философы, с опозданием занявшиеся этой проблемой, в самом начале были введены в заблуждение недавними терминологическими капризами. Я рекомендую обратиться к книге Алена Грейфена (Alan Grafen) «Естественный отбор, кин-отбор и групповой отбор», в которой ясно и, я надеюсь, теперь окончательно, разобрана проблема неогруппового отбора.

>

Глава 8. Битва поколений

id="note8.1">

[8.1]

Р. Трайверс в 1972 г. искусно разрешил эту проблему…

Статьи Роберта Трайверса, публиковавшиеся в начале семидесятых годов, были одним из самых важных факторов, вдохновлявших меня в работе над первым изданием этой книги; в конце концов его идеи, составляющие главное содержание гл. 8, были изложены в его собственной книге «Социальная эволюция». Я рекомендую прочитать эту книгу не только из-за ее содержания, но и из-за ее стиля: ясный, академически корректный, но с точно отмеренной долей антропоморфического легкомыслия, чтобы поддразнить напыщенных персон, и приправленный автобиографическими отступлениями. Я не могу удержаться от того, чтобы не привести одно из них, настолько оно характерно. Трайверс описывает, с каким воодушевлением он наблюдал за взаимоотношениями между двумя самцами павианов в Кении: «Была и другая причина моего волнения — я невольно отождествлял одного из павианов с Артуром, очаровательным юношей в расцвете сил…» Новая глава, написанная Трайверсом, о конфликте родители — потомки доводит предмет изложения до современного уровня. В сущности мало что можно добавить к его статье 1974 г. Теория выдержала проверку временем. Более детализированные математические модели подтвердили, что в значительной мере словесные рассуждения Трайверса действительно вытекают из общепризнанной дарвиновской теории.

id="note8.2">

[8.2]

Родитель всегда побеждает.

В своей книге «Дарвинизм и дела человеческие» (с. 39) Александер великодушно признал, что он был неправ, утверждая, что победа родителей в конфликте родители—потомки неизбежно следует из основополагающих допущений дарвинизма. Теперь мне кажется, что его тезис об асимметричном преимуществе, которым обладают родители над своими потомками в битве поколений, может быть подкреплен доводом иного рода; о нем мне сообщил Эрик Чарнов.

Чарнов писал об общественных насекомых и о происхождении стерильных каст, но его рассуждения имеют более широкое приложение, и я постараюсь обобщить их. Рассмотрим молодую самку какого-нибудь моногамного вида, не обязательно насекомого, находящуюся на пороге половой зрелости. Перед ней стоит дилемма: уйти из родительского гнезда и попытаться размножаться самостоятельно или же остаться и помогать выращивать своих младших братьев и сестер. Биология размножения ее вида дает ей уверенность в том, что ее мать будет продолжать заботиться о ее родных братьях и сестрах в течение длительного времени. По логике Гамильтона эти сибсы представляют для нее совершенно такую же генетическую «ценность», какую представляли бы ее собственные потомки. В той мере, в какой это касается степени генетического родства, молодой самке безразлично, какую из двух возможностей выбрать; ее не «заботит», уйдет она или останется. Однако ее родителям далеко небезразличен ее выбор. С точки зрения ее матери это выбор между внуками и детьми. В генетическом плане ценность новых детей вдвое выше, чем ценность новых внуков. Если мы говорим о конфликте между родителями и потомками, связанном с тем, покидают ли потомки гнездо или остаются и помогают родителям, то, по мнению Чарнова, разрешить этот конфликт для родителей совсем несложно по той простой причине, что только родители и воспринимают эту ситуацию как конфликт!

Все это похоже на состязание между двумя бегунами, в котором один получит 1000 фунтов только в том случае, если он победит, а его противник получит те же 1000 фунтов независимо от того, победит он или будет побежден. Следует ожидать, что первый бегун будет больше стараться и что если во всем остальном возможности соперников равны, то он, вероятно, победит. На самом деле позиция Чарнова прочнее, чем можно судить по этой аналогии, потому что затраты на бег без препятствий не так уж велики, чтобы отпугнуть многих людей, независимо от того, получат они награду или нет. Для дарвинистских игр такие олимпийские идеалы — слишком большая роскошь: за усилия, прилагаемые в одном направлении, всегда приходится расплачиваться напрасной потерей усилий в другом направлении; т. е. если бы речь шла о спорте, чем больше сил вы затрачиваете в каком-то одном состязании, тем меньше вероятность, что вам удастся победить в будущих соревнованиях, поскольку силы будут истощены.

У разных видов условия различаются, а поэтому предсказать результаты дарвинистских игр не всегда возможно. Тем не менее, если принимать во внимание только степень генетического родства и допустить моногамную систему спаривания (с тем чтобы дочь была уверена, что ее сибсы — это в самом деле ее родные сибсы), можно ожидать, что старой матери путем различных манипуляций удастся добиться, чтобы ее молодая половозрелая дочь осталась с ней и оказывала ей помощь. Для матери это чистый выигрыш, тогда как у дочери нет никаких мотивов сопротивляться манипуляциям матери, потому что в генетическом плане ей безразлично, на какой из двух возможностей остановить свой выбор.

И снова важно подчеркнуть, что в этих рассуждениях необходимо учитывать фактор «при прочих равных условиях». Несмотря на то, что прочие условия обычно не бывают равны, рассуждения Чарнова все еще могут оказаться полезными для Александера или для любого другого сторонника теории манипуляции. Во всяком случае практические доводы Александера в пользу того, что победа должна остаться за родителями — они крупнее, сильнее и т. п., — представляются обоснованными.

>

Глава 9. Битва полов

id="note9.1">

[9.1]

...насколько более жестким должен быть конфликт между супругами, вовсе не связанными родством?

Как часто бывает, в этой первой фразе негласно подразумевается «при прочих равных условиях». Супруги, по всей вероятности, много выигрывают в результате кооперации. На протяжении настоящей главы мы убедимся в этом не один раз. Ведь, в конце концов, весьма вероятно, что супруги будут вести игру с ненулевой суммой — игру, в которой, скооперировавшись, оба могут увеличивать свои выигрыши, вместо того, чтобы выигрыш одного неизбежно сопровождался проигрышем другого (объяснения вы найдете в гл. 12). Это одно из тех мест книги, где я слишком сильно приблизился к циничному, эгоистичному взгляду на жизнь. Тогда это казалось необходимым, так как преобладающая в то время точка зрения на брачные церемонии у животных слишком сильно отклонилась в противоположную сторону. Почти повсеместно люди совершенно некритически допускали, что брачные партнеры готовы к безграничному сотрудничеству друг с другом. Возможность эксплуатации даже не обсуждалась. В этом историческом контексте кажущийся цинизм фразы, с которой начинается глава, был понятен, но сегодня я бы несколько смягчил тон. Точно так же замечания о сексуальных ролях мужчины и женщины, сделанные в конце этой главы, теперь кажутся мне наивными. Более исчерпывающее изложение эволюции половых различий у человека можно найти в книгах Мартина Дейли (Martin Daly) и Марго Уилсон (Margo Wilson) «Пол, эволюция и поведение» и Дональда Саймонза (Donald Symons) «Эволюция сексуальности у человека».

id="note9.2">

[9.2]

...число детей у мужчины практически неограничено. С этого момента и начинается эксплуатация женщины.

В настоящее время акцентирование внимания на неравенстве размеров сперматозоида и яйцеклетки как на главном факторе, определяющем разные роли полов, представляется мало обоснованным. Хотя один сперматозоид очень мал и содержание в нем питательных веществ ничтожно, произвести миллионы сперматозоидов и успешно ввести их в самку в условиях жесткой конкуренции — задача, требующая больших затрат. Я предпочитаю теперь объяснять фундаментальную асимметрию между самцами и самками следующим образом.

Начнем с двух полов, у которых нет никаких особых атрибутов, отличающих самцов от самок. Обозначим их нейтральными символами A и B. Перед каждым животным, будь это A или B, стоит проблема выбора: время и усилия, затрачиваемые на борьбу с врагами, не могут быть использованы на выращивание уже существующего потомства, и наоборот. Следует ожидать, что каждое животное распределяет свои усилия между этими альтернативными задачами. Я веду к тому, что индивидуумы A могут остановить свой выбор на ином соотношении усилий, затрачиваемых на выполнение этих двух задач, нежели индивидуумы B, и с этого момента возможно возникновение между ними неравенства, которое в дальнейшем будет непрерывно возрастать.

Допустим, например, что два пола, А и B, с самого начала придерживаются различного мнения о том, как они могут добиться большого успеха: вкладывая в детей или вкладывая в борьбу (под «борьбой» я имею в виду все виды непосредственных боев между индивидуумами одного и того же пола). Первоначально расхождение во мнениях может быть очень небольшим, поскольку я хочу показать, что оно обладает тенденцией к возрастанию. Допустим, что индивидуумы A с самого начала исходят из принципа, что борьба способствует их репродуктивному успеху больше, чем забота о потомстве; индивидуумы B, напротив, считают, что забота о потомстве несколько важнее для их репродуктивного успеха, чем борьба. Это означает, например, что хотя индивидууму A забота о потомстве дает, конечно, некоторый выигрыш, разница между более и менее заботливыми среди индивидуумов A меньше, чем между удачливым и неудачливым бойцами среди тех же A. Среди индивидуумов B картина прямо противоположная. Таким образом, за счет данного количества усилий индивидуум A получит выигрыш, если займется борьбой, тогда как индивидуум B скорее достигнет успеха, если направит все свои усилия не на борьбу, а на заботу о потомстве.

Поэтому в последующих поколениях индивидуумы A будут заниматься борьбой немного больше, чем их родители, а индивидуумы B будут бороться немного меньше, а заботиться о потомстве немного больше, чем их родители. При этом различие между лучшим A и худшим A в отношении борьбы даже возрастет, а различие между ними в отношении заботы о потомстве даже уменьшится. Поэтому индивидуум А может выиграть даже больше, направив свои усилия на борьбу, а направив их на заботу о потомстве — даже меньше. Прямо противоположные изменения будут происходить в последующих поколениях с индивидуумами B. Ключевая идея здесь состоит в том, что небольшое изначальное различие между полами может оказаться самоусиливающимся: отбор может начаться со слабого начального различия и постепенно усиливать это различие, пока индивидуумы А не превратятся в тех, кого мы теперь называем самцами, а индивидуумы B в тех, кого называют самками. Изначальное различие может быть настолько слабым, что возникает случайно. В конце концов стартовые условия двух полов вряд ли могут быть совершенно идентичными.

Как вы убедитесь, это довольно похоже на созданную Паркером, Бейкером и Смитом (Parker, Baker, Smith) теорию о раннем разделении примитивных гамет на сперматозоиды и яйцеклетки (см. с. 107). Здесь она изложена в более общем виде. Разделение на сперматозоиды, и яйцеклетки — лишь один из аспектов более глубокого разделения функций полов. Вместо того, чтобы рассматривать его как главное и выводить из него все характерные атрибуты самцов и самок, у нас теперь есть возможность объяснить разделение на сперматозоиды и яйцеклетки и все другие аспекты с одних и тех же позиций. Нам следует лишь допустить, что существуют два пола, которым надо спариваться друг с другом; ничего больше знать о них нам не надо. Исходя из этого минимального допущения, мы можем с определенностью сказать, что как бы ни были равны оба пола изначально, они будут дивергировать в разных направлениях, специализируясь к противоположным и комплементарным репродуктивным стратегиям. Разделение на сперматозоиды и яйцеклетки — один из симптомов более всеобъемлющего разделения, а не его причина.

id="note9.3">

[9.3]

Воспользуемся методом анализа агрессивных конфликтов, созданного Мэйнардом Смитом, и применим его к взаимоотношениям полов.

Эту мысль о том, чтобы постараться найти эволюционно стабильную смесь стратегий в пределах одного пола, уравновешенную эволюцинно стабильной смесью стратегий другого пола, теперь продолжают развивать как сам Мэйнард Смит, так и действующие независимо от него, но в том же направлении Ален Грейфен и Ричард Сибли (Richard Sibly). Статья Грейфена и Сибли сложнее в чисто техническом отношении, а статью Мэйнарда Смита легче объяснить на словах. Коротко, он начинает с рассмотрения двух стратегий — Охранять и Бросать, к которым могут прибегнуть индивидуумы и одного, и другого пола. Как и в моей модели «Скромница/Распутница и Верный/Гуляка», интересно выяснить, какие комбинации стратегий самцов и какие комбинации стратегий самок бывают стабильными одновременно. Ответ на этот вопрос зависит от тех допущений, которые мы примем в отношении экономических условий, специфичных для данного вида. Примечательно, однако, что как бы мы ни варьировали эти экономические допущения, получить полный континуум изменяющихся количественно стабильных результатов нам не удастся. Модель приводит к одному из всего лишь четырех стабильных результатов. Эти четыре результата были названы по названиям тех животных, у которых они наблюдались: Утки (самец бросает, самка охраняет). Колюшка (самка бросает, самец охраняет), Плодовая мушка (оба бросают) и Гиббон (оба охраняют).

Есть еще и другое, даже более интересное обстоятельство. Как говорилось в гл. 5, модели ЭСС могут привести к любому из двух результатов, причем оба они одинаково стабильны. Это относится и к описанной здесь модели Мэйнарда Смита. Особенно примечательно, что определенные пары результатов, в отличие от других пар, бывают одновременно стабильны при одинаковых экономических условиях. Так, например, при одном комплексе условий одновременно стабильны стратегии Утка и Колюшка. Какая из них возникает на самом деле, зависит от удачи или, точнее, от случайностей в эволюционной истории — от начальных условий. При другом комплексе условий стабильны стратегии Гиббон и Плодовая мушка. Опять-таки возникновение у данного вида той, а не другой стратегии определяется случайными событиями в его истории. Однако ни при каких условиях стратегии Гиббон и Утка не бывают одновременно стабильны, так же как не существует условии, при которых могут быть одновременно стабильными стратегии Утка и Плодовая мушка. Из этого основанного на «стабильности парности» анализа конгениальных и неконгениальных сочетаний ЭСС вытекают интересные следствия, которые могут помочь нам в воссоздании эволюционной истории. Например, результаты анализа наводят на мысль, что некоторые типы переходов от одной системы спаривания к другой в процессе эволюции можно считать вероятными, а другие маловероятными. Мэйнард Смит исследует эти хитросплетения эволюционной истории в кратком обзоре систем спаривания по всему животному миру, заканчивая его незабываемым риторическим вопросом: «Почему самцы млекопитающих не лактируют?»

id="note9.4">

[9.4]

...можно показать, что на самом деле никакой осцилляции происходить не будет. Система перейдет в стабильное состояние.

Как мне ни жаль, но это утверждение ошибочно. Однако его ошибочность представляет определенный интерес, так что я оставил свою фразу без изменений и теперь постараюсь обстоятельно разъяснить ее. Это, в сущности, ошибка такого же рода, как и та, которую Гейл и Иве обнаружили в оригинальной статье Мэйнарда Смита и Прайса (см. примечание 2 к гл. 5). На мою ошибку указали два матбиолога, работающие в Австрии — П. Шустер и К. Зигмунд (P. Schuster, K. Sigmund).

Я правильно рассчитал те отношения Верных самцов к Гулякам и Скромниц к Распутницам, при которых самцы этих двух типов добивались одинакового успеха, так же как и самки двух типов. Это было действительно равновесие, однако я не проверил, было ли оно стабильным. Это мог быть опасный острый пик, а не надежно защищенная долина. Для проверки на стабильность следует выяснить, что произойдет, если слегка нарушить равновесие (столкните мяч с горы — и вы потеряете его навсегда, подтолкните его со дна долины вверх по склону, и он вернется назад). В моем частном численном примере равновесным соотношением для самцов было 5/8 Верных и 3/8 г.ляк. А что, если чисто случайно доля Гуляк в популяции возрастет до уровня, несколько превышающего равновесный? Для того чтобы равновесие можно было считать стабильным и саморегулирующимся, необходимо, чтобы стратегия Гуляк немедленно стала чуть менее успешной. К сожалению, как показали Шустер и Зигмунд, происходит как раз обратное: Гуляки начинают добиваться большего успеха! Их частота в популяции, таким образом, не только не саморегулируется, но самовозрастает. Она возрастает, но не бесконечно, а лишь до известного предела. Если построить динамическую модель на компьютере, как я это теперь проделал, то возникает бесконечно повторяющийся цикл. По иронии судьбы, это в точности тот самый цикл, который я описал в качестве гипотетического на с. 145, однако я полагал, что это всего лишь поясняющий пример, подобно тому, как это было с Ястребами и Голубями. По аналогии с Ястребами и Голубями я допускал, причем совершенно ошибочно, что этот цикл — чисто гипотетический и что система действительно придет к стабильному равновесию. Этот последний удар, нанесенный Шустером и Зигмундом, не позволяет добавить решительно ничего.

Короче говоря, можно сделать два заключения:

1) битва полов имеет много общего с хищничеством;

2) поведение влюбленных столь же изменчиво, как луна, и столь же непредсказуемо, как погода.

Конечно, люди давно заметили это, не прибегая к дифференциальным уравнениям.

id="note9.5">

[9.5]

...примеры отцовской преданности… среди рыб… обычны. Почему?

Гипотеза о рыбах, которую выдвинула Тамсин Карлайль (Tamsin Carlisle) в процессе наших индивидуальных занятий, была теперь проанализирована Марком Ридли (Mark Ridley) в его исчерпывающем сравнительном исследовании заботы о потомстве по всему животному миру. Его статья, начало которой, так же как и гипотезе Карлайль, положила сделанная для меня курсовая работа, — это удивительно остроумный ход. К сожалению, он не нашел подтверждения гипотезе.

id="note9.6">

[9.6]

...какого-то нестабильного процесса, вышедшего из-под контроля.

Фишеровская центробежная теория полового отбора, которую он изложил крайне коротко, теперь разработана математически Р. Ланде (R. Lande) и другими. Она превратилась в довольно сложный предмет, хотя, уделив ее объяснению достаточно места, можно обойтись без математики. Однако для этого пришлось бы посвятить ей целую главу, как было сделано в «Слепом часовщике» (гл. 8), так что здесь я ограничусь сказанным.

Вместо этого я займусь одной проблемой полового отбора, которой я никогда не уделял должного внимания ни в одной из своих книг. Каким образом поддерживается необходимый уровень изменчивости? Дарвиновский отбор может функционировать только в том случае, если имеется достаточная генетическая изменчивость, т. е. если есть из чего отбирать. Начав, например, выводить породу кроликов, уши которых становились бы все длиннее и длиннее, вы на первых порах добьетесь успеха. У среднего кролика в природной популяции уши имеют среднюю длину (разумеется, по кроличьим стандартам; по нашим стандартам уши у него, конечно, очень длинные). У нескольких кроликов уши короче среднего, а у нескольких других — длиннее. Скрещивая друг с другом только самых длинноухих кроликов, вы добьетесь увеличения средней длины ушей в дальнейших поколениях. Это будет происходить в течение некоторого времени. Но если продолжать скрещивание индивидуумов с самыми длинными ушами, то наступит момент, когда необходимая для этого изменчивость иссякнет. У всех кроликов будут «самые длинные» уши, и эволюция застопорится. При нормальной эволюции такие проблемы не возникают, потому что внешняя среда в большинстве случаев не оказывает постоянного и непоколебимого давления в одном направлении. «Наилучшая» длина для любой отдельной части тела данного животного в норме не будет «чуть длиннее существующей в настоящее время средней, независимо от того, какова в данный момент эта средняя». Скорее всего наилучшая длина будет постоянной, скажем 7,5 см. Но половой отбор действительно может обладать неудобным свойством: стремлением догнать непрерывно удаляющийся «оптимум». Вкусы самок в самом деле могут требовать все более длинных ушей у самцов, независимо от того, какой длины уже достигли уши в нынешней популяции. В результате может действительно наступить серьезное истощение изменчивости. И тем не менее половой отбор, очевидно, работает; мы в самом деле видим у самцов украшения, достигшие нелепых размеров. Перед нами очевидный парадокс, который можно назвать парадоксом исчезающей изменчивости.

Ланде разрешает этот парадокс с помощью мутационного процесса. По его мнению, частота мутаций всегда будет достаточной, чтобы поддерживать непрерывный отбор. Раньше люди сомневались в этом, потому что в своих рассуждениях они оперировали одновременно лишь одним геном: частота мутаций в каждом отдельном генетическом локусе слишком низка, чтобы разрешить парадокс исчезающей изменчивости. Ланде напоминает нам, что на «хвосты» и другие структуры, подверженные половому отбору, оказывает влияние бесконечно большое число различных генов — «полигенов», мелкие эффекты которых суммируются. Кроме того, в процессе эволюции набор полигенов, влияющих на изменчивость «длины хвоста», изменяется: в него включаются новые гены, тогда как старые утрачиваются. Мутационный процесс может затронуть каждый из этого обширного и изменяющегося набора генов, так что исчезает самый парадокс исчезающей изменчивости.

У. Гамильтон подходит к этому парадоксу иначе. Его ответ звучит так же, как и его ответы на большинство других вопросов, возникающих сегодня: «Паразиты». Вернемся к ушам кролика. Разумно предположить, что оптимальная их длина зависит от разного рода акустических факторов, и вряд ли эти факторы по мере смены одного поколения другим будут непрерывно изменяться в одном определенном направлении. Возможно, что наилучшая длина для кроличьих ушей и не абсолютно постоянная, но все же вряд ли отбор может сдвинуть ее в том или другом направлении так сильно, что она выйдет за пределы изменчивости, установленные нынешним генофондом. А поэтому никакого парадокса исчезающей изменчивости просто нет.

Обратимся теперь к среде, подобной создаваемой паразитами и подверженной резким колебаниям. В мире, полном паразитов, действует сильный отбор в пользу способности противостоять им. Естественный отбор будет благоприятствовать тем индивидуальным кроликам, которые в наименьшей степени уязвимы для существующих вокруг паразитов. Эпидемии возникают и кончаются. Сегодня это может быть миксоматоз, на следующий год — чума, еще через год — кроличий СПИД и т. д. Затем, по прошествии десятилетнего цикла, это может быть снова миксоматоз и т. д. Или же у самого вируса миксоматоза в процессе эволюции могут возникнуть адаптации, позволяющие ему преодолеть механизмы устойчивости, выработавшиеся у кроликов. Гамильтон рисует циклы контрадаптаций и контр-контрадаптаций, совершающие бесконечные витки во времени и беспрестанно упрямо обновляющие определение «самого лучшего» кролика.

Вывод из всего этого состоит в том, что адаптации, обеспечивающие устойчивость к инфекциям, в чем-то очень важном отличаются от адаптации к физической среде. В то время, как существование вполне постоянной «наилучшей» длины для задних ног кролика возможно, никакого «самого лучшего» кролика в смысле устойчивости к инфекции не существует. По мере изменения наиболее опасной в данное время болезни изменяется и нынешний «наилучший» кролик. Являются ли паразиты единственными селективными факторами, действующими таким образом? А как, например, насчет хищников и жертв? Гамильтон соглашается, что в своей основе взаимоотношения хищник-жертва подобны взаимоотношениям паразит-хозяин. Но хищники или жертвы не эволюционируют так быстро, как многие паразиты; и эволюция у них детальных контрадаптаций по типу «на каждый ген — новый ген» менее вероятна, чем у паразитов.

Гамильтон использует циклические изменения, которыми паразиты бросают вызов своим хозяевам, в качестве основы для еще более грандиозной теории — его теории о том, почему вообще существует пол. Однако здесь нас интересует, как он использует паразитов для решения вопроса о парадоксе исчезающей изменчивости при половом отборе. Он полагает, что наследственная устойчивость к инфекциям у самцов — самый важный критерий, которым руководствуются самки в своем выборе. Инфекция — это такое бедствие, что любая возможность заранее выявить ее у потенциальных супругов дает самке колоссальное преимущество. Самка, способная выступить в роли хорошего врача-диагноста и выбрать себе в брачные партнеры только самого здорового самца, заработает для своих детей здоровые гены. А поскольку определение «самый лучший кролик» постоянно изменяется, то всегда будет существовать нечто важное, что должны иметь в виду самки, когда они оценивают самцов, чтобы сделать выбор. Очевидно, всегда должно существовать некоторое число «хороших» и некоторое число «плохих» самцов. Они не могут все стать «хорошими» после отбора на протяжении многих поколений, потому что к тому времени паразиты изменятся, так что изменится и определение «хорошего» кролика. Гены, определяющие устойчивость к одному штамму вируса миксоматоза, окажутся бессильными против нового штамма этого вируса, появившегося на сцене в результате мутации. И так далее, на протяжении бесконечных циклов возникающих в процессе эволюции возбудителей эпидемий. Паразиты никогда не отступают, так что и самки не могут прекратить свой бесконечный поиск здоровых брачных партнеров.

Как же реагируют самцы на такое внимательное изучение их самками, выступающими в роли врачей? Будет ли отбор благоприятствовать генам, способным создать ложное впечатление здоровья? Вначале, возможно, этот номер пройдет, но в дальнейшем отбор, действуя на самок, усилит их диагностические способности, так что они начнут отличать обманщиков от действительно здоровых самцов. В конечном счете, как полагает Гамильтон, самки станут такими опытными врачами, что самцам придется либо вовсе отказаться от саморекламы, либо прибегать лишь к честной рекламе. Если какая-либо сексуальная реклама самцов становится слишком преувеличенной, это, очевидно, объясняется тем, что она действительно соответствует состоянию их здоровья. Эволюция самцов должна привести к тому, чтобы самкам было легко распознавать здоровых самцов (если они в самом деле здоровы). Действительно здоровым самцам должно быть приятно возвещать об этом. Нездоровым самцам, конечно, возвещать не о чем, но что они могут поделать? Если они не будут по крайней мере стараться разыгрывать здоровых, самки сделают самые печальные для них заключения. Между прочим, все эти разговоры о врачах могут ввести в заблуждение, если кто-то начнет думать, что самки стремятся лечить самцов. Но самки заинтересованы лишь в том, чтобы поставить диагноз, причем интерес их отнюдь не альтруистичен. И я полагаю, что больше нет необходимости извиняться за такие метафоры, как «честность» и «делают заключения».

Возвращаясь к саморекламе, следует сказать, что ситуация выглядит так, будто самки вынуждают самцов к развитию неких медицинских термометров, которые постоянно торчали бы у них изо рта, позволяя самкам точно знать температуру самцов. Какие это могли бы быть «термометры»? Вспомните живописные длинные хвосты самцов райских птиц. Мы уже приводили элегантное объяснение, данное Фишером этому элегантному украшению. Гамильтоновское объяснение гораздо более прозаично. Заболевания у птиц очень часто сопровождаются диареей. Длинный хвост при этом выглядел бы очень непрезентабельно. Если надо скрыть диарею, то лучший способ сделать это — не иметь длинного хвоста. Опять же, если надо продемонстрировать, что диареи нет, то наилучший способ доказать это — завести очень длинный хвост. При этом будет особенно бросаться в глаза, что хвост чистый. Если у самца хвост вообще мало заметен, самки не смогут понять, чистый он или замаранный, и станут предполагать худшее. Гамильтон мог бы и не согласиться именно с таким объяснением эволюции хвоста у райских птиц, однако это хороший пример объяснения того сорта, которое ему импонирует.

Я уподобил самок врачам, ставящим диагноз, а самцов — больным, облегчающим им задачу, выставляя «термометры» напоказ. Размышления о других диагностических приборах — тонометре и стетоскопе — навели меня на некоторые соображения о половом отборе у человека. Я вкратце изложу их, хотя должен признаться, что они скорее занимательны, нежели правдоподобны. Сначала некая гипотеза о том, почему человек утратил приапову кость, или бакулум. Половой член мужчины в состоянии эрекции может стать таким твердым и жестким, что люди иногда в шутку выражают сомнение: а нет ли в нем кости? Ведь у многих млекопитающих в пенисе и в самом деле имеется бакулум — кость, придающая ему жесткость и помогающая поддерживать эрекцию. Более того, эта кость имеется у многих наших родичей-приматов; она есть даже у ближайших родичей человека — шимпанзе, хотя она у них очень мала и, по всей вероятности, находится на пути к исчезновению. По-видимому, у приматов наблюдается тенденция к редукции бакулума; Homo sapiens и несколько видов низших узконосых обезьян утратили его окончательно. Итак, мы избавились от кости, которая предположительно легко обеспечивала нашим предкам жесткость пениса. Теперь эрекция полностью зависит от гидравлической насосной системы, которая представляется дорогостоящим и обходным способом обеспечения этой функции. И, что самое главное, эрекция может не состояться, что весьма прискорбно (если не сказать больше) для генетического успеха самца в природных условиях. Что же тут могло бы помочь? Совершенно очевидно: конечно, кость в пенисе. Так почему же она не возникла у человека в процессе его эволюции? На этот раз биологи из бригады «генетического ограничения» не могут выйти из положения, воскликнув: «О, просто не возникла необходимая вариация!» До недавнего времени у наших предков была именно такая кость, и мы буквально изо всех сил постарались утратить ее! Почему?

Эрекция у мужчин достигается просто за счет кровяного давления. Предположение, что интенсивность эрекции равноценна тонометру врача и что женщины судят по ней о здоровье мужчины, к сожалению, неправдоподобно. Однако мы не обязательно должны ограничиваться метафорой тонометра. Если по тем или иным причинам неудавшаяся эрекция может служить чувствительным ранним показателем определенных расстройств здоровья, физических или психических, то некая версия этой теории может оказаться полезной. Все, что нужно самкам, это надежный инструмент для диагностики. При обычном медицинском обследовании врачи не применяют тест на эрекцию, они предпочитают попросить вас высунуть язык. Между тем неудавшаяся эрекция известна как ранний симптом диабета и некоторых нервных болезней. Гораздо чаще она бывает вызвана психологическими факторами (депрессия, состояние тревоги, переутомление, потеря уверенности в себе). (Можно представить себе, что у животных неудавшаяся эрекция бывает вызвана низким статусом самца в иерархической структуре сообщества. У некоторых низших узконосых обезьян пенис в состоянии эрекции сигнализирует об угрозе.) Нельзя считать неправдоподобным, что, совершенствуя под действием естественного отбора свои диагностические способности, самки могут собирать по крупицам всевозможные данные о состоянии здоровья самца и судят о его способности справляться со стрессовыми ситуациями по напряженности и положению его пениса. Однако наличие кости помешало бы этому! Не нужно быть особенно сильным или выносливым, чтобы иметь кость в пенисе; это доступно всякому. Таким образом, селективное давление со стороны женщин привело к утрате мужчинами бакулума, потому что только по-настоящему здоровые или сильные мужчины способны на действительно стойкую эрекцию, позволяющую женщинам поставить без помех правильный диагноз.

В этих построениях есть один момент, способный вызвать разногласия. Можно было бы спросить: каким образом женщины, послужившие фактором этого отбора, узнают, что ощущаемая ими жесткость обусловлена наличием кости, а не гидравлическим давлением? Ведь мы начали с замечания, что при эрекции пенис мужчины по твердости близок к кости. Я сомневаюсь, однако, чтобы на самом деле женщин было легко обмануть. Они тоже подвергались отбору, правде не на утрату кости, а на приобретение рассудительности. И не надо забывать, что женщина имеет возможность видеть пенис, когда он не находится в состоянии эрекции, и контраст разителен. Кости не способны спадаться, уменьшаясь в объеме (хотя можно допустить, что они могут втягиваться). Возможно, что именно существование пениса в двух разных обличиях гарантирует подлинность гидравлической рекламы.

Займемся теперь «стетоскопом». Рассмотрим другую серьезную проблему супружеского ложа — храп. Сегодня это просто некое бытовое неудобство. Но в далеком прошлом это мог быть вопрос жизни или смерти. В ночной тишине храп раздается очень громко. Он мог привлекать хищников очень издалека, что угрожало как самому храпуну, так и группе, в которой он находится. Почему же в таком случае многие люди храпят? Вообразите спящую группу наших предков в какой-нибудь плейстоценовой пещере, где мужчины храпят каждый на своей ноте, а женщины поневоле бодрствуют, так как им не остается ничего другого, кроме как слушать (я присоединяюсь к мнению о том, что мужчины храпят чаще). Не предоставляют ли мужчины таким образом женщинам преднамеренную и дополнительную информацию, которую врач получает с помощью стетоскопа? Не могут ли какие-то специфические особенности и тембр храпа данного мужчины отражать состояние его дыхательных путей? Я не хочу сказать, что люди храпят только тогда, когда они больны. Храп скорее можно сравнить с несущей частотой радиопередачи, которая всегда продолжает гудеть, независимо ни от чего; это четкий сигнал, который модулируется в зависимости от состояния носа и горла таким образом, что позволяет судить об этом состоянии. Мысль о том, что женщины предпочитают чистые трубные звуки, издаваемые храпуном при здоровых бронхах, храпам и фырканью, когда все забито мокротой, прекрасна, но я должен сознаться, что мне трудно вообще представить себе женщину, которая может решительно влюбиться в храпуна. И все же общеизвестно, как ненадежна интуиция. Возможно, что эти строки хотя бы заинтересуют какого-нибудь специалиста по бессонице. Кстати сказать, он мог бы заняться проверкой также и другой теории.

К этим двух спекуляциям не следует относиться слишком серьезно. Они имели бы успех, если бы к ним можно было пристегнуть принцип теории Гамильтона о том, как самки стараются выбирать здоровых самцов. Быть может, самое интересное в моих спекуляциях — это то, что они указывают на связь между теорией Гамильтона о паразитах и теорией гандикапа Амоса Захави. Из моей гипотезы о пенисе логически вытекает, что утрата бакулума создает помехи самцам, а эта утрата не просто случайна. Реклама, основанная на гидравлическом давлении, эффективна именно потому, что эрекция иногда терпит неудачу. Читатели-дарвинисты несомненно уловили эту подразумевающуюся «помеху» и она могла возбудить в них серьезные сомнения. Я прошу их отложить свое суждение до тех пор, пока они не прочитают следующее примечание о новом подходе к самому принципу гандикапа.

id="note9.7">

[9.7]

...сводящий с ума своей парадоксальностью «принцип гандикапа», выдвинутый Захави.

В первом издании я писал: «Я не верю в эту теорию, хотя я далеко не так уверен в правомерности своего скептицизма, как тогда, когда услышал о ней впервые». Я рад, что написал «хотя», потому что теперь теория Захави кажется мне гораздо более правдоподобной, чем в то время, когда я высказывал это мнение. Несколько уважаемых теоретиков стали недавно относиться к ней серьезно, в том числе мой коллега Ален Грейфен, который, как уже отмечалось в печати ранее, «обладает весьма досадным качеством всегда оказываться правым». Он построил на основании высказываний Захави математическую модель и утверждает, что она работает. И что это не какая-то фантастическая, понятная лишь посвященным пародия ни Захави, подобная тем, которыми забавлялись другие, а непосредственное математическое воплощение самой идеи Захави. Я собираюсь рассмотреть здесь первоначальную ЭСС-модель Грейфена, хотя сам он в настоящее время работает над полным генетическим вариантом, который должен в некоторых отношениях превзойти ЭСС-модель. Это не означает, что ЭСС-модель в самом деле ошибочна. Она представляет собой хорошую аппроксимацию, как, в сущности, все ЭСС-модели, в том числе и описанные в этой книге.

Принцип гандикапа потенциально приложим ко всем ситуациям, в которых индивидуумы пытаются судить о качестве других индивидуумов, но мы ограничимся рассмотрением самцов, рекламирующих себя самкам. Эта ситуация выбрана в интересах ясности; это один из тех случаев, когда сексизм местоимений действительно полезен. Грейфен отмечает, что существует по крайней мере четыре подхода к принципу гандикапа. Им можно дать следующие названия: 1) квалифицирующий гандикап (всякий самец, выживший несмотря на свой гандикап, очевидно, обладает и в остальном прекрасными качествами, так что самки выбирают его); 2) выявляющий гандикап (самцы выполняют какую-нибудь тяжелую задачу, с тем чтобы проявить свои скрытые таланты); 3) условный гандикап (гандикап развивается только у самцов высокого качества); и, наконец, 4) излюбленная интерпретация Грейфена, которую он назвал гандикапом стратегического выбора (у самцов имеется недоступная никому информация о собственных качествах, которая не предоставляется самкам и которую они используют для того, чтобы «решать», надо ли развивать данный гандикап и сколь значительным он должен быть). Грейфеновский гандикап стратегического выбора поддается анализу на ЭСС. Он не связан с предварительным допущением, что рекламы, используемые самцами, обойдутся дорого или создадут гандикапы. Напротив, самцы вольны развивать любые виды рекламы — честные или мошеннические, дорогостоящие или дешевые. Но Грейфен показывает, что при условии такой свободы выбора на старте система гандикапа вполне может оказаться стабильной.

Грейфен исходил из следующих четырех допущений.

1. Самцы действительно различаются по качеству. Качество — это не какое-то снобистское представление, подобно легкомысленной гордости за свой старый колледж или студенческое братство (я однажды получил письмо от одного читателя, который закончил его так: «Я надеюсь, что Вы не сочтете мое письмо самонадеянным, ведь я все-таки выпускник Бейлиол-Колледжа»). Качество для Грейфена означает, что существуют хорошие самцы и плохие самцы в том смысле, что самки выиграют в генетическом отношении, если они будут избирать в качестве брачных партнеров хороших самцов и избегать плохих. Хороший означает с крепкими мышцами, способный быстро бегать, находить добычу, строить прочные гнезда. Мы не говорим о финальном репродуктивном успехе самца, так как он зависит от того, выберет ли самка данного самца. Разговор об этом сейчас отвлек бы нас от сути дела; это может проявиться или не проявиться на модели.

2. Самки не могут непосредственно оценивать качество самца — им приходится полагаться на его рекламу. На этой стадии мы не делаем никаких допущений о честности этой рекламы. Честность — это что-то другое, она может быть обнаружена при моделировании, а может и не проявиться, но ведь для этого и создается модель. Самец может, например, нарастить себе накладные плечи, чтобы создать иллюзию крупных размеров и силы. Модель должна показать нам, будет ли такой фальшивый сигнал эволюционно стабильным или же естественный отбор окажет поддержку скромным, честным и правдивым рекламам.

3. В отличие от самок, которые их разглядывают, самцы в некотором смысле сами «знают», какого они качества; и они принимают определенную «стратегию» рекламирования — правило условного рекламирования в зависимости от своего качества. Как обычно, под «знают» я не имею в виду осознанное знание. Предполагается, что у самцов имеются гены, включающиеся условно — в зависимости от качества самого самца (есть основания полагать, что эта информация не является общедоступной; ведь гены самца встроены в его биохимию, т. е. по своему положению несомненно гораздо лучше могут реагировать на его качество, чем гены самки). Разные самцы выбирают разные правила. Например, один самец может следовать правилу: «Выставляю напоказ хвост, размеры которого пропорциональны моему истинному качеству»; другой может следовать прямо противоположному правилу. Это позволяет естественному отбору корректировать правила, отдавая предпочтение самцам, которые генетически запрограммированы таким образом, что способны применять различные правила. Уровень рекламы необязательно должен быть прямо пропорционален истинному качеству; самец мог бы выбрать даже противоположное правило. Нам лишь требуется, чтобы самцы были запрограммированы на применение какого-то правила для определения своего истинного качества и выбирали на этом основании тот или иной уровень рекламы (например, размеры хвоста или рогов). Что же касается того, какое из возможных правил в конечном счете окажется стабильным, то это опять-таки одна из задач, решать которую должна помочь модель.

4. Самки обладают параллельной возможностью создавать собственные правила. В их случае правила касаются выбора самцов на основании действенности рекламы последних (вспомните, что самки, или скорее их гены, не располагают, в отличие от самцов, сведениями о качестве как таковом). Одна самка, например, придерживается правила: «Полностью доверяй самцам», другая — правила: «Совершенно игнорируй рекламу самца», а третья — «Считай, что на самом деле все обстоит как раз наоборот тому, в чем хочет убедить реклама».

Итак, мы допустили существование самцов, различающихся по тем правилам, на основании которых они связывают качество с уровнем рекламы; и самок, различающихся по тем правилам, по которым они соотносят выбор брачного партнера с уровнем рекламы. До сих пор в наших рассуждениях самцы могут выбирать любое правило, связывающее качество с рекламой, а самки — любое правило, связывающее рекламу самцов с их выбором. В этом спектре возможных правил для самца и самки мы хотим найти пару эволюционно стабильных правил. Это немножко похоже на модель «Верный/Гуляка и Скромница/Распутница» в том смысле, что мы ищем эволюционно стабильное правило для самцов и эволюционно стабильное правило для самок, причем стабильность означает взаимную стабильность, при которой каждое данное правило стабильно при выполнении его самого и другого правила. Если нам удастся найти такую пару эволюционно стабильных правил, то мы сможем изучать их, чтобы понять, какой будет жизнь в сообществе, которое состоит из самцов и самок, действующих по этим правилам. А точнее, будет ли этот мир соответствовать принципу гандикапа, выдвинутому Захави?

Грейфен поставил перед собой задачу найти такую взаимно стабильную пару правил. Если бы я взялся за эту задачу, мне, пожалуй, пришлось бы долго и упорно заниматься трудоемким моделированием на компьютере. Я бы заложил в компьютер данные по ряду самцов, различающихся по тем правилам, в соответствии с которыми они соотносят качество с рекламой. Я заложил бы в него также данные по ряду самок, различающихся по тем правилам, с помощью которых они выбирают самцов на основании уровней рекламы, применяемой последними. Затем я дал бы возможность самцам и самкам «носиться» в компьютере, сталкиваясь друг с другом, спариваясь в тех случаях, когда самцы удовлетворяют критериям выбора самок, и передавая свои самцовые и самочьи правила своим сыновьям и дочерям. Конечно, при этом индивидуумы выживали бы или погибали в зависимости от унаследованного ими «качества». По мере смены одного поколения другим изменяющиеся судьбы каждого из самцовых и каждого из самочьих правил отражались бы в виде изменений их частот в популяции. Время от времени я бы заглядывал в компьютер, чтобы посмотреть, не образовалась ли там какая-нибудь стабильная смесь.

Этот метод в принципе должен работать, но при практическом его применении возникают трудности. К счастью, математики могут получить те же результаты, какие дает моделирование, составив несколько уравнений и решив их. Именно это и сделал Грейфен. Я не стану приводить здесь его математические выкладки или его дальнейшие допущения, а прямо перейду к выводам. Ему в самом деле удалось найти пару эволюционно стабильных правил.

Итак, переходим к главному вопросу. Создает ли грейфеновская ЭСС такой мир, который Захави признал бы как мир гандикапов и честности? Ответом будет «да». Грейфен установил, что существование эволюционно стабильного мира, сочетающего в себе следующие свойства, постулированные Захави, действительно возможно.

1. Несмотря на возможность свободного стратегического выбора уровня рекламы, самцы выбирают уровень, в точности соответствующий их истинному качеству, если даже при этом обнаруживается, что это качество низкое. Иными словами, при ЭСС самцы ведут себя честно.

2. Несмотря на возможность свободного стратегического выбора, при ответе на рекламу самцов самки в конечном итоге выбирают стратегию «Доверяй самцу». При ЭСС самки оправданно «доверчивы».

3. Реклама обходится дорого. Иными словами, если бы можно было как-то пренебречь эффектами качества и привлекательности, то самцу было бы выгоднее не прибегать к рекламе (сберегая тем самым энергию или оказываясь менее заметным для хищников). Реклама не просто обходится дорого — данная система рекламы выбирается именно из-за ее высокой цены. Она выбирается именно потому, что на самом деле приводит к снижению успеха того, кто ее применяет — при прочих равных условиях.

4. Высококачественным самцам реклама обходится дороже. При одном и том же уровне рекламы для тщедушного самца риск возрастает больше, чем для сильного. Низкокачественные самцы подвергаются большему риску при дорогостоящей рекламе, чем высококачественные.

Эти свойства, особенно третье, полностью соответствуют идеям Захави. Представленная Грейфеном картина, демонстрирующая их эволюционную стабильность в достаточно правдоподобных условиях, кажется очень убедительной. Но столь же убедительны доводы критиков Захави (влияние которых сказалось на первом издании этой книги), считавших, что идеи Захави не имеют отношения к эволюции. Мы не должны соглашаться с заключениями Грейфена до тех пор, пока не поймем, в чем ошибались его прежние критики (если они в чем-то ошибались). Какие принятые ими допущения привели их к иному заключению? Отчасти дело, по-видимому, в том, что они не предоставляли своим гипотетическим животным возможность выбора из непрерывного ряда стратегий. Это часто сводилось к тому, что сформулированные в словесной форме идеи Захави его критики интерпретировали в соответствии с тем или другим из трех первых подходов, предложенных Грейфеном: квалифицирующий гандикап, выявляющий гандикап или условный гандикап. Они совершенно не касались четвертого подхода-гандикапа стратегического выбора. В результате они либо совершенно не могли использовать принцип гандикапа, либо он у них работал лишь в особых математически абстрактных условиях, которые не позволяют ощутить в полной мере парадоксальность идеи Захави. Кроме того, существенная черта подхода к интерпретации принципа гандикапа на основе стратегического выбора состоит в том, что при ЭСС как высоко-, так и низкокачественные индивидуумы применяют одну и ту же стратегию: «Рекламируй честно».

Создатели более ранних моделей исходили из допущения, что высоко- и низкокачественные самцы прибегают к разным стратегиям, а поэтому в процессе эволюции у них возникли различные рекламы. Грейфен, напротив, допускает, что при ЭСС рекламирующие себя высоко- и низкокачественные самцы используют одну и ту же стратегию, а различия в рекламах появляются в результате того, что различия в их качестве точно передаются правилом сигнализации.

Мы всегда признавали, что сигналы фактически могут оказаться гандикапами. Мы понимали, что в процессе эволюции, особенно в результате полового отбора, могут возникнуть экстремальные гандикапы, несмотря на то, что это гандикапы. Частью теории Захави, против которой мы возражали, была идея о том, что отбор может благоприятствовать тем или иным сигналам как раз потому, что они оказываются гандикапами для тех, кто ими пользуется. Очевидно, Ален Грейфен реабилитирует именно этот момент.

Если Грейфен прав, а я думаю, что он прав, то этот результат имеет существенное значение для всего изучения сигналов животных. Возможно, что нам даже придется коренным образом изменить наши взгляды на эволюцию поведения и на многие проблемы, обсуждаемые в этой книге. Сексуальная реклама — это реклама лишь одного рода. Теория Захави — Грейфена, если она верна, перевернет вверх дном представления биологов о взаимоотношениях между соперниками, принадлежащими к одному полу, между родителями и потомками, между врагами, принадлежащими к разным видам. Эта перспектива меня несколько обеспокоила, поскольку она означает, что теперь нельзя будет с позиций здравого смысла отбрасывать почти безумные теории. Если мы видим, что животное действительно ведет себя глупо, например при виде льва становится на голову, вместо того чтобы спасаться бегством, то возможно, что оно делает это, чтобы покрасоваться перед самкой. Возможно даже, что оно рисуется перед львом: «Я такое высококачественное животное, что пытаясь поймать меня, ты просто зря теряешь время» (см. с. 161).

Однако каким бы безумством я ни считал то или иное поведение, естественный отбор может придерживаться другого мнения. Животное может кувыркаться и прыгать перед сворой пускающих слюни хищников, если риск, которому оно при этом подвергается, повышает действенность его рекламы сильнее, чем угрожает ему самому. Именно опасность такого поведения придает силу этой демонстрации. Конечно, естественный отбор не будет благоприятствовать бесконечно большой опасности. Эксгибиционизм, граничащий с безрассудством, неизбежно будет наказан. Рискованная или дорогостоящая демонстрация может показаться нам безрассудной. Но это, в сущности, нас не касается. Только естественный отбор имеет право судить об этом.

>

Глава 10. Почеши мне спину, и я тебя оседлаю

id="note10.1">

[10.1]

...по-видимому [эволюция стерильных рабочих] смогла реализоваться только у общественных насекомых.

Так мы все полагали. Но при этом мы не принимали во внимание голого землекопа (Heterocephalus glaber). Голые землекопы — это мелкие, почти слепые и почти лишенные волосяного покрова грызуны, живущие большими подземными колониями в засушливых областях Кении, Сомали и Эфиопии. Это настоящие «общественные насекомые» из мира млекопитающих. Первые исследования этих грызунов, проведенные Дженнифер Джарвис (Jennifer Jarvis) на содержавшихся в неволе колониях в Кейптаунском университете, теперь расширены благодаря полевым наблюдениям Роберта Бретта (Robert Brett) в Кении. Дальнейшее изучение колоний, содержащихся в неволе, проводят в настоящее время в США Ричард Александер (Richard Alexander) и Пол Шерман (Paul Sherman). Эти четыре исследователя обещали выпустить совместную книгу и я, в числе прочих, ожидаю ее с большим интересом. А пока мое изложение основывается на нескольких опубликованных статьях и на научных докладах, сделанных П. Шерманом и Р. Бреттом. Кроме того, мне посчастливилось ознакомиться с колонией голых землекопов в Лондонском зоопарке, которую мне показал куратор отдела млекопитающих Брайан Бертрам (Brian Bertram).

Голые землекопы живут в обширных и сильно разветвленных подземных туннелях. Обычно колония состоит из 70–80 индивидуумов, но иногда это число возрастает до нескольких сотен. Общая длина туннелей, занимаемых одной колонией, может достигать 3 и даже 5 км, а ежегодные выбросы земли — 3–4 тонны. Рытье туннеля производится коллективно. Рабочий, идущий впереди, вгрызается в почву зубами, а затем вырытая почва передается назад по живому конвейеру — извивающейся цепочке из 5–6 маленьких розоватых животных. Время от времени переднего рабочего подменяет один из задних.

В каждой колонии размножается только одна самка, которая делает это на протяжении нескольких лет. Джарвис, используя, по-моему вполне законно, термины, принятые по отношению к общественным насекомым, называет ее маткой. Матка спаривается только с двумя или тремя самцами. Все остальные индивидуумы, как самки, так и самцы, никогда не спариваются, т. е. ведут себя подобно рабочим у насекомых. И, как у многих видов общественных насекомых, если удалить из колонии матку, несколько самок, которые прежде были стерильными, начинают переходить в фертильное состояние, а затем вступают в борьбу за место матки.

Стерильных индивидуумов землекопа называют «рабочими», и это опять-таки достаточно обоснованно. Рабочие могут принадлежать и к одному, и к другому полу, как у термитов (но не у муравьев, пчел и ос, у которых рабочие — это всегда самки). Функции, выполняемые землекопами, зависят от их размеров. Мелкие рабочие, которых Джарвис называет «постоянными рабочими», роют и выбрасывают почву, кормят детенышей и, очевидно, освобождают матку от всех забот, с тем чтобы она могла сосредоточить все свое внимание на деторождении. У землекопа число детенышей в помете больше, чем бывает обычно у грызунов таких размеров, что опять-таки заставляет вспомнить матку у общественных насекомых. Самые крупные стерильные индивидуумы, по-видимому, главным образом едят и спят, тогда как поведение рабочих средних размеров носит промежуточный характер. Касты голых землекопов, подобно кастам пчел, постепенно переходят одна в другую, и между ними нет четкого разграничения, наблюдаемого у муравьев.

Джарвис вначале называла самых крупных стерильных индивидуумов «нерабочими». Действительно ли они ничего не делают? Имеются данные, полученные как в лабораториях, так и в результате полевых наблюдений, позволяющие считать, что эти индивидуумы выступают в роли солдат, защищающих колонию в случае опасности; главные хищники, угрожающие землекопам, — это змеи. Возможно также, что крупные стерильные индивидуумы служат «пищевыми бочками», аналогичными «медовым бочкам» муравьев (см. с. 161). Голые землекопы — гомокапрофаги (вежливый способ объяснить, что они поедают испражнения друг друга; правда, в их диету входит и другая пища, иначе это противоречило бы законам природы). Быть может, крупные индивидуумы выполняют важную функцию, накапливая в своем теле экскременты в периоды, когда пища имеется в избытке, и выступая в роли склада аварийного запаса, когда пищи мало.

Для меня самая загадочная особенность голых землекопов состоит в том, что хотя они во многом сходны с общественными насекомыми, у них нет касты, эквивалентной молодым крылатым репродуктивным индивидуумам муравьев и термитов. У них, конечно, есть репродуктивные индивидуумы, но они не начинают свой жизненный путь, взлетая в воздух и распространяя свои гены в новые области. Насколько известно, колонии голых землекопов просто растут вширь по периферии, так что система подземных туннелей охватывает все большую площадь. По-видимому, эти колонии не отторгают от себя индивидуумов, расселяющихся на большие расстояния, — эквивалент крылатых репродуктивных индивидуумов. Это так удивительно для моих дарвинистских представлений, что я не могу удержаться от соблазна высказать некоторые гипотезы. Я интуитивно чувствую, что в один прекрасный день мы обнаружим у землекопов фазу расселения, которая до сих пор по какой-то причине оставалась незамеченной. Вряд ли можно надеяться на то, что у расселяющихся индивидуумов в буквальном смысле отрастут крылья! Но они могут иметь те или иные приспособления, позволяющие им жить над, а не под землей. Например, их тело может быть не голым, а покрытым шерстью. Голые землекопы неспособны регулировать температуру своего тела так, как это делают все другие млекопитающие; они больше похожи на «холоднокровных» рептилий. Может быть, они регулируют температуру сообща — еще одно сходство с термитами и пчелами. А не используют ли они всем известное постоянство температуры в хорошем погребе? Во всяком случае, вполне возможно, что мои гипотетические расселяющиеся индивидуумы, в отличие от подземных рабочих, «теплокровны», как это обычно для млекопитающих. Можно ли представить себе, что какой-то из уже известных грызунов с нормальным шерстным покровом, которого до сих пор относили к совершенно другому виду, окажется потерянной кастой голого землекопа?

Ведь прецеденты такого рода известны. Например, саранча. Саранча принадлежит к прямокрылым и обычно ведет одиночный, скрытный и таинственный образ жизни, типичный для этих насекомых. Но при некоторых особых условиях саранча изменяется коренным — и ужасным — образом. Насекомые теряют свою покровительственную окраску, покрываясь яркими полосками. Это может показаться почти предупреждением, и притом отнюдь не пустым, ибо поведение саранчи также изменяется. Отказавшись от одиночного образа жизни, саранча сбивается в стаи, что имеет ужасающие последствия. Начиная с библейских времен и по сегодняшний день ни одно животное не вызывало у людей такого страха, как саранча, наносящая колоссальный вред их благосостоянию. Миллионные скопища этого насекомого налетают на посевы, оставляя после себя опустошенную полосу шириной в десятки километров; иногда стая саранчи перемещается на несколько сот километров в день, ежедневно пожирая по 2000 тонн сельскохозяйственных культур и оставляя за собой голод и разорение. И тут мы подошли к возможной аналогии с голыми землекопами. Различие между одиночным индивидуумом и его стадной ипостасью столь же велико, как различие между двумя кастами муравьев. Кроме того, до 1921 г.да кобылок-Джекилей и их саранчевых Хайдов систематики относили к разным видам, что в точности соответствует нашей высказанной выше гипотезе о «потерянной касте» голых землекопов.

Но, Господи, кажется не слишком правдоподобным, что маммологи могли оставаться в таком неведении вплоть до сегодняшнего дня. Между прочим, я должен сказать, что обычных, нетрансформированных голых землекопов иногда можно увидеть на поверхности земли и они, возможно, способны перемещаться на гораздо большие расстояния, чем это принято считать. Но прежде чем покончить с гипотезой «трансформированного репродуктивного индивидуума», рассмотрим еще одну возможность, подсказываемую аналогией с саранчой. Быть может, голые землекопы в самом деле продуцируют трансформированных репродуктивных особей, но только при определенных условиях — условиях, не возникавших за последние десятилетия. В Африке и на Среднем Востоке нашествия саранчи все еще угрожают сельскому хозяйству, как в библейские времена. Однако в Северной Америке дело обстоит иначе. У некоторых видов прямокрылых потенциально возможно превращение одиночной фазы в стадную. Но, по-видимому из-за отсутствия соответствующих условий, в этом веке в Северной Америке не произошло ни одного нашествия саранчи (хотя регулярно возникают вспышки численности совершенно другого насекомого-вредителя — цикад, которых в быту американцы ошибочно называют «саранчой»). Тем не менее, если бы в Америке в настоящее время произошло нашествие настоящей саранчи, это не вызвало бы особого удивления: вулкан не потух, он только дремлет. Если бы, однако, мы не вели записей о такого рода событиях в других частях земного шара, то это могло бы оказаться неприятным сюрпризом, потому что в роли вредителя выступили бы всего лишь всем известные одиночные невинные кобылки. А что, если голым землекопам, подобно американским кобылкам, заранее предначертано произвести другую, расселяющуюся касту, но лишь при соответствующих условиях, которые по какой-то причине не реализовались в нынешнем веке? В XIX в. Восточная Африка могла подвергаться нашествиям покрытых шерстью землекопов, мигрировавших по поверхности земли, но никаких сведений об этом до нас не дошло. Или, быть может, такие сведения содержатся в легендах и сагах местных племен.

id="note10.2">

[10.2]

...что у перепончатокрылых самка связана со своими сестрами более тесным родством, чем со своими потомками…

Незабываемая оригинальность гамильтоновской гипотезы о «3/4-ном коэффициенте родства» в особом случае Hymenoptera парадоксальным образом поколебала репутацию его более общей и фундаментальной теории. История с гаплодиплоидным 3/4-ным коэффициентом родства достаточно проста, чтобы каждый, приложив небольшое усилие, мог ее понять и захотел рассказать о ней другим. Это хороший «мим». Если вы узнаете о Гамильтоне не в результате чтения его работ, а, скажем, из разговора в пивной, то весьма велика вероятность, что вы не услышите ни о чем другом, кроме как о гаплодиплоидии. В наши дни любой учебник биологии, как бы коротко в нем ни излагался кин-отбор, почти вынужден посвятить отдельный параграф «3/4-ному коэффициенту родства». Коллега, которого теперь считают одним из крупнейших в мире специалистов по общественному поведению крупных млекопитающих, признался мне, что долгие годы он рассматривал гамильтоновскую теорию кин-отбора как гипотезу о 3/4-ном коэффициенте родства и ничего более! Из всего этого следует, что если какие-либо новые факты заставят нас усомниться в значении гипотезы о 3/4-ном коэффициенте родства, то люди воспримут их как доводы против всей теории кин-отбора. Эту ситуацию можно пояснить следующим образом. Допустим, что некий композитор написал большую и чрезвычайно сложную симфонию, где-то в середину которой он вставил одну мелодию, запоминающуюся так легко, что все стали насвистывать ее на улицах. Симфонию начинают отождествлять с одной этой мелодией, и если затем людям она разонравится, то им будет казаться, что им не нравится вся симфония.

Возьмем, например, весьма полезную статью Линды Гамлин (Linda Gamlin) о голых землекопах, опубликованную недавно в журнале New Scientist. Статье серьезно повредило сделанное в ней замечание, косвенно указывающее на то, что голые землекопы и термиты не укладываются в гипотезу Гамильтона просто потому, что они гаплодиплоидны! Трудно поверить, что автор вообще знакома с двумя классическими работами Гамильтона, где гаплодиплоидии отведено всего четыре из пятидесяти страниц. Она, очевидно, доверилась вторичным источникам (надеюсь, что это не был «Эгоистичный ген»).

Другой пример касается солдат у тлей, описанных в примечаниях к гл. 6. Там я объяснял, что поскольку тли образуют клоны идентичных близнецов, следует ожидать у них проявлений альтруистичного самопожертвования. Гамильтон отметил это в 1964 г. и приложил некоторые усилия, чтобы объяснить один затруднительный факт: насколько было известно в то время, клональные животные не проявляли никакой особой склонности к альтруистичному поведению. Обнаружение солдат у тлей, когда это произошло, как нельзя лучше соответствовало теории Гамильтона. Тем не менее оригинальная работа, возвестившая об этом открытии, написана так, будто это открытие создает затруднение для теории Гамильтона, поскольку тли не гаплодиплоидны! Милая ирония.

Эту тему можно продолжить, обратившись к термитам, поведение которых также, как часто считают, не укладывается в рамки теории Гамильтона: дело в том, что именно Гамильтон в 1972 г. выдвинул одну из самых остроумных теорий о причинах эволюции у термитов общественного образа жизни, которую можно считать удачной аналогией гаплодиплоидной гипотезы. Эту теорию — теорию циклического инбридинга — обычно приписывают С. Бартцу (S. Bartz), который разработал ее спустя семь лет после того, как ее впервые опубликовал Гамильтон. Как это характерно для Гамильтона, сам он позабыл, что он первым подумал о «теории Бартца», и мне пришлось сунуть ему под нос его собственную работу, для того, чтобы он в это поверил! Не касаясь проблем приоритета, сама эта теория очень интересна, и мне жаль, что я не обсуждал ее в первом издании. Теперь я исправлю эту ошибку.

Я сказал, что эта теория была разумным аналогом гаплодиплоидной гипотезы. Я имел в виду следующее. Важная черта гаплодиплоидной теории с точки зрения эволюции общественного образа жизни состоит в том, что индивидуум может быть генетически ближе к своему сибсу (т. е. сестре или брату), чем к своим потомкам. Это предрасполагает самку оставаться в родительском гнезде и выращивать своих сибсов, а не покидать это гнездо, с тем чтобы рожать и выращивать собственных потомков. Гамильтона заинтересовало, почему и у термитов сибсы могут быть генетически ближе друг к другу, чем родители к потомкам. Ключ к этому дает инбридинг. Потомство, получающееся в результате спаривания животных со своими сибсами, генетически более однородно. Белые крысы, относящиеся к одной лабораторной линии, генетически эквивалентны идентичным близнецам. Это объясняется тем, что они получены в результате длинного ряда спаривании между братьями и сестрами. Пользуясь специальной терминологией, их геномы становятся высокогомозиготными: почти в каждом из их генетических локусов оба гена идентичны; они идентичны также генам, находящимся в этом локусе у всех других индивидуумов данной линии. В природе нечасто можно встретить длинные ряды кровосмесительных скрещиваний; существует, однако, одно важное исключение — термиты!

У термитов гнездо обычно закладывает царская пара-царь и царица, которые затем спариваются только друг с другом, пока один из них не умирает. Тогда его место занимает один из их потомков, который, совершая кровосмешение, спаривается с оставшимся в живых родителем. В случае смерти обоих членов первоначальной царской пары их замещает пара брат-сестра, что также связано с кровосмешением. И так далее. Пока колония достигает зрелости, она, по всей вероятности, успевает потерять по нескольку царей и цариц, и спустя несколько лет все потомство становится высокоинбредным, подобно лабораторным крысам. Средняя гомозиготность и средний коэффициент родства в гнезде термитов с годами ползет все выше и выше, а царей и цариц последовательно замещают их потомки или их сибсы. Но это лишь первый шаг в рассуждениях Гамильтона. Самая оригинальная их часть впереди.

Конечный продукт любой семьи общественных насекомых — новые крылатые репродуктивные особи, которые вылетают из родительского гнезда, спариваются и основывают новую семью. Есть шансы, что спаривания между новыми молодыми царями и царицами окажутся некровосмесительными. Более того, создается впечатление, что существуют специальные синхронизирующие «соглашения», в соответствии с которыми во всех имеющихся в данной местности гнездах термитов крылатые репродуктивные особи рождаются в один и тот же день, вероятно для того, чтобы способствовать аутбридингу. Рассмотрим теперь генетические последствия спаривания молодого царя из семьи А и молодой царицы из семьи B. Оба они — эквиваленты инбредных лабораторных крыс. Но поскольку они возникли в результате различных независимых программ кровосмесительных скрещиваний, они генетически различны. Они подобны инбредным белым крысам, принадлежащим к разным лабораторным линиям. Потомки от скрещиваний между ними будут высоко, но при этом единообразно гетерозиготны. Гетерозиготными называют индивидуумов, у которых во многих локусах находятся два разных гена. Единообразно гетерозиготные означает, что почти все потомки гетерозиготны по одним и тем же локусам. Они генетически почти идентичны своим сибсам, но в то же время высокогетерозиготны.

Пойдем дальше. Новая семья с основавшей ее царской парой разрастается. В нее входит множество идентично гетерозиготных молодых термитов. Подумайте, что же произойдет, когда один или оба члена царской пары основателей умрут? Прежний кровосмесительный цикл начнется сначала, с весьма существенными последствиями. Первое поколение, родившееся от кровосмесительного спаривания, будет гораздо более жизнеспособным, чем предыдущее поколение, независимо от того, произошло ли оно от пары брат-сестра, отец-дочь или мать-сын. Принцип этот общий для всех пар, однако проще рассмотреть случай спаривания брата с сестрой. Если и брат, и сестра единообразно гетерозиготны, то их потомки будут представлять собой высоковариабельную мешанину генетических рекомбинаций. Это вытекает из элементарной менделевской генетики и относится в принципе ко всем животным и растениям, а не только к термитам. Если единообразно гетерозиготных индивидуумов скрещивать либо друг с другом, либо с одной из гомозиготных родительских линий, то возникает полный хаос (в генетическом смысле)! Причину можно отыскать в любом начальном учебнике генетики, и я не буду на этом останавливаться. В данном контексте важное следствие заключается в том, что на этой стадии развития термитной семьи индивидуум генетически ближе к своим сибсам, чем к своим потенциальным потомкам. И это, как мы видели в случае гаплодиплоидных перепончатокрылых, представляется вероятным предварительным условием для эволюции альтруистически стерильных каст рабочих.

Однако даже в тех случаях, когда нет особой причины ожидать, что индивидуумы будут ближе к своим сибсам, чем к своим потомкам, нередко имеются веские доводы в пользу того, что индивидуумы будут так же близки к своим сибсам, как и к своим потомкам. Единственное условие, необходимое для того, чтобы это оказалось правдой, — известная степень моногамии. Некоторое удивление вызывает, с точки зрения Гамильтона, отсутствие других видов, у которых стерильные рабочие ухаживали бы за своими младшими братьями и сестрами. Что на самом деле широко распространено, как мы убеждаемся все больше и больше, так это своего рода разбавленный вариант феномена стерильного рабочего, «помогающего в гнезде». У многих видов птиц и млекопитающих молодые половозрелые индивидуумы, прежде чем уйти от родителей и завести собственную семью, остаются с ними на один или два сезона размножения, помогая выращивать своих младших братьев и сестер. Если допустить, что выгадывающие от этого индивидуумы — их родные (а не единокровные или единоутробные) братья и сестры, то каждый грамм пищи, вложенный в сибса, приносит с генетической точки зрения такой же доход, как если бы он был вложен в собственных детей. Однако это лишь при прочих равных условиях. Для того чтобы объяснить, почему помощь, оказываемая в гнезде старшими потомками родителям, наблюдается у некоторых видов, отсутствуя у других, нам надо рассмотреть возможные неравенства условий.

Возьмем, например, какой-то вид птиц, гнездящихся в дуплистых деревьях. Такие деревья представляют большую ценность, так как число их ограничено. Вообразите себя в роли молодой половозрелой птицы. Если ваши родители живы, то они, по всей вероятности, владеют одним из немногих имеющихся в округе дупел (они непременно должны были владеть каким-то дуплом по крайней мере до недавнего времени, так как иначе вас не было бы на свете). Итак, вы, вероятно, живете в дупле, этом процветающем инкубаторе, а вновь появляющиеся в нем обитатели — ваши родные братья и сестры, генетически столь же близкие вам, как и ваши собственные потомки, которые могут появиться в будущем. Если вы покидаете родительское гнездо и собираетесь жить самостоятельно, ваши шансы найти дуплистое дерево невелики. Даже если вам это удастся, потомки, которых вы вырастите, будут вам генетически не ближе, чем ваши братья и сестры. Некое данное количество усилий, вложенное в гнездо ваших родителей, представляет большую ценность, чем то же самое количество усилий, затраченное на попытку устроиться самостоятельно. В таком случае эти условия могут благоприятствовать заботе о сибсах — «оказанию помощи в гнезде».

Все это так, но тем не менее нельзя забывать, что некоторые индивидуумы — или все индивидуумы в такое-то время — должны будут покинуть родительское гнездо и искать новое дупло или то, что соответствует дуплу для их вида. Пользуясь введенной в гл. 7 терминологией, кто-то должен рожать на свет потомков, иначе не о ком будет заботиться! Дело здесь не в том, что «иначе вид обречен на вымирание». Просто в любой популяции, где преобладают гены чистой заботы о потомстве, гены, детерминирующие рождение потомков, приобретут преимущество. У общественных насекомых функция деторождения лежит на матках и самцах. Это они отправляются на поиски новых «дуплистых деревьев» и именно поэтому они всегда крылатые, даже у муравьев, рабочие которых лишены крыльев. Эти репродуктивные индивидуумы специализированы, сохраняя свою специализацию на всю жизнь. Птицы и млекопитающие, помогающие в гнезде, делают это иначе. Каждый индивидуум проводит часть своей жизни (обычно один или два сезона после достижения половозрелости) в роли «рабочего», помогая выращивать младших братьев и сестер, тогда как остальную часть жизни он стремится быть «репродуктивным».

А как же голые землекопы, описанные в предыдущем примечании? Они служат идеальным примером принципа действенной заботы, или «дуплистого дерева», хотя в данном случае дуплистое дерево как таковое отсутствует. Ключом к пониманию их поведения служит, вероятно, пятнистое распределение источников их пищи под саванной. Голые землекопы питаются главным образом подземными клубнями. Эти клубни могут быть очень крупными и лежать глубоко в земле. У одного растения вес одного клубня может превышать вес 1000 землекопов, и если им удастся найти такой клубень, его может хватить всей колонии на месяцы или даже годы. Проблема состоит в том, чтобы найти эти клубни, так как они разбросаны по саванне крайне неравномерно. Для голых землекопов найти источник пищи трудно, но если его удается найти, то все трудности окупаются. Роберт Бретт рассчитал, что одному землекопу, работающему в одиночку, чтобы найти всего один клубень, пришлось бы грызть землю так долго, что он совершенно истер бы себе зубы. Обширная же колония, непрерывно и тщательно обследующая свои многокилометровые тоннели, очень эффективно добывает клубни. Каждому индивидууму экономически гораздо выгоднее быть частью артели землекопов.

Таким образом, обширная система тоннелей, обслуживаемая десятками скооперировавшихся рабочих, — это действующее предприятие, подобное нашему гипотетическому «дуплистому Дереву», только в еще большей степени! Исходя из того, что вы живете в процветающем обобществленном лабиринте и что ваша мать всё еще продолжает производить в нем ваших родных братьев и сестер, побуждение покинуть его и начать создание собственной семьи безусловно станет очень слабым. Даже если некоторые из рождающихся потомков являются только полусибсами, то довод о «действующем предприятии» все еще может оставаться достаточно мощным, чтобы удерживать молодых половозрелых индивидуумов в родительском доме.

id="note10.3">

[10.3]

Их результаты достаточно близки к соотношению 3 самки:1 самец, предсказанному теорией…

Ричард Александер и Пол Шерман опубликовали статью, в которой подвергли критике методы, примененные Трайверсом и Хейром, и сделанные ими заключения. Они соглашаются с тем, что сдвиг соотношения полов в пользу самок обычен для общественных насекомых, но возражают против того, что это соотношение близко к 3:1. Они предпочитают другое объяснение сдвига соотношения в пользу самок, которое, подобно объяснению Трайверса и Хейра, впервые предложил Гамильтон. Я нахожу возражения Александера и Шермана вполне убедительными, но должен признаться, что, как мне кажется, такая прекрасная работа, как исследование Трайверса и Хейра, не может быть целиком ошибочной.

Ален Грейфен указал мне на другую, более тревожную проблему, связанную с рассмотрением соотношения полов у перепончатокрылых в первом издании этой книги. Я пояснил его точку зрения в «Расширенном фенотипе» (с. 75–76), а здесь ограничусь краткой выдержкой: Потенциальному рабочему все еще безразлично, выращивать ли своих сибсов или собственных потомков при любом мыслимом соотношении полов в популяции. Допустим, что соотношение полов в данной популяции смещено в пользу самок; допустим даже, что оно соответствует предсказанному Трайверсом и Хейром 3:1. Поскольку рабочая особь связана со своей сестрой более близким родством, чем со своим братом или со своим потомком любого пола, может показаться, что при таком сдвинутом в сторону самок соотношении полов она «предпочтет» заботиться о своих сибсах, а не о потомках: ведь делая выбор в пользу сибсов, она приобретает самое ценное — сестер (плюс несколько сравнительно бесполезных братьев). Однако в этих рассуждениях мы пренебрегаем относительно высокой репродуктивной ценностью, которой обладают в такой популяции самцы ввиду их немногочисленности. Рабочий может быть связан с каждым из своих братьев не очень тесным родством, но если в популяции в целом самцов мало, то каждый из этих братьев соответственно с большой вероятностью может оказаться предком будущих поколений.

id="note10.4">

[10.4]

Если данная популяция достигает такой ЭСС, которая ведет ее к вымиранию, то она вымирает; что ж, тем хуже для нее.

Знаменитый философ, покойный Дж. Маки (J. L. Mackie) привлек внимание к одному интересному следствию, вытекающему из того, что популяции моих «Плутов» и «Недоброжелателей» могут быть одновременно стабильными. Может оказаться «тем хуже для нее», если популяция принимает ЭСС, которая ведет ее к вымиранию; Маки добавляет к этому, что при некоторых видах ЭСС вероятность вымирания популяции больше, чем при других. В данном частном примере и стратегия плута, и стратегия недоброжелателя эволюционно стабильны: популяция может стабилизироваться на равновесии как для одной, так и для другой. По мнению Маки, популяции, стабилизировавшиеся на равновесии для плута, с большей вероятностью придут в дальнейшем к вымиранию. Возможно поэтому, что существует некий отбор более высокого уровня, «межЭСС-отбор», благоприятствующий реципрокному альтруизму. На этой основе можно разработать аргументацию в пользу своего рода группового отбора, которая, в отличие от большинства теорий группового отбора, могла бы оказаться приемлемой. Я изложил эту аргументацию в своей статье «В защиту эгоистичного гена».

>

Глава 11. В защиту эгоистичного гена

id="note11.1">

[11.1]

Я бы сделал ставку на один фундаментальный закон… все живое эволюционирует в результате дифференциального выживания реплицирующихся единиц.

Мое убеждение в том, что все живое в любом уголке Вселенной может эволюционировать лишь теми способами, которые описаны Дарвином, теперь изложено и подкреплено полнее в моей статье «Универсальный дарвинизм» и в последней главе «Слепого часовщика». Я показал, что все когда-либо предлагавшиеся альтернативы дарвинизму в принципе не в состоянии объяснить организованную сложность жизни. Это общий довод, он не опирается ни на какие конкретные факты о жизни, какой мы ее знаем. Как таковой, он подвергся критике со стороны тех ученых, которые достаточно прозаичны, чтобы считать, что единственный путь к научным открытиям лежит через изнурительную работу с горячей пробиркой (или холодные забрызганные грязью сапоги). Один критик жаловался, что мои доводы носят «философский» характер, как будто этого достаточно для их осуждения. Какими бы они ни были, остается фактом, что ни он, ни кто другой не нашли никаких слабых мест в том, что я сказал. И «в принципе» аргументация, подобная моей, не только имеет отношение к реальному миру, но и может оказаться более убедительной, чем доводы, основанные на результатах конкретных исследований. Мои рассуждения, если они верны, сообщают нам нечто важное о жизни в любом уголке Вселенной. А лабораторные и полевые исследования могут дать нам сведения только о той жизни, какую мы можем наблюдать здесь, на Земле.

id="note11.2">

[11.2]

Мим.

Слово мим становится, по-видимому, хорошим мимом. Оно теперь используется довольно широко, а в 1988 г. его внесли в официальный перечень слов, рассматриваемых на предмет включения в будущие издания Оксфордского словаря английского языка. Это заставляет меня снова повторить, что мои покушения на человеческую культуру чрезвычайно скромны и сводятся практически к нулю. Мои истинные стремления, а они, надо признаться, велики, направлены совсем в другую сторону. Я хочу потребовать признания почти безграничной силы за чуть неточно самореплицирующимися единицами, если уж они возникли где-то во Вселенной. Причина их силы в том, что они имеют тенденцию становиться основой дарвиновского отбора, который, если число поколений достаточно велико, накапливая изменения, создает системы чрезвычайной сложности. Я считаю, что при наличии соответствующих условий репликаторы автоматически собираются вместе, образуя системы, или машины, в которых они путешествуют по свету и трудятся во имя своей непрерывной репликации. В первых десяти главах «Эгоистичного гена» внимание было сосредоточено исключительно на репликаторах одного типа — на генах. Обсуждая мимы в последней главе [первого издания], я старался обосновать свою точку зрения применительно к репликаторам вообще и показать, что гены — не единственные представители этой важной категории. Я не уверен, что человеческая культура в самом деле обладает всем необходимым для того, чтобы привести в действие какую-то форму дарвинизма. Но в любом случае этот вопрос играет в моих построениях лишь вспомогательную роль. гл. 11 достигнет своей цели, если читатель, закрывая книгу, почувствует, что молекулы ДНК — не единственные структуры, способные послужить основой для дарвиновской эволюции. Моей целью было поставить ген на место, а не создавать великую теорию человеческой культуры.

id="note11.3">

[11.3]

...мимы следует рассматривать как живые структуры не только в метафорическом, но и в техническом смысле.

Самореплицирующийся кусочек ДНК представляет собой, так сказать, материальное воплощение мима (hardware). Каждый такой кусочек имеет особую структуру, отличную от структуры соперников — других кусочков ДНК. Если мимы головного мозга аналогичны генам, то они должны представлять собой самореплицирующиеся мозговые структуры — реальные схемы, состоящие из проводов, переключателей и т. п., которые воссоздаются в одном мозгу за другим. Мне всегда было несколько неловко произносить все это вслух, потому что о мозге мы знаем гораздо меньше, чем о генах, и поэтому наши высказывания о возможном строении мозга неизбежно бывают туманными. Так что я почувствовал облегчение, получив недавно очень интересную статью от Хуана Делиуса (Juan Delius) из университета Констанц в Германии. В отличие от меня, Делиус не должен оправдываться, поскольку он — известный специалист по мозгу, тогда как я таковым отнюдь не являюсь. Поэтому я в восторге от того, что у него достало смелости доказать справедливость рассматриваемой здесь идеи, опубликовав подробное описание возможной нейронной структуры мима. Среди других интересных вещей, которые он исследует гораздо более тщательно, чем это делал я, — аналогия между мимами и паразитами, а точнее — между мимами и целым спектром организмов, на одном конце которого находятся вредоносные паразиты, а не другом — неопасные «симбионты». Меня особенно привлекает этот подход ввиду моего интереса к «расширенно-фенотипическим» воздействиям генов паразита на поведение хозяина (см. гл. 13 настоящей книги и в особенности гл. 12 «Расширенного фенотипа»). Кстати сказать, Делиус подчеркивал ясное разделение между мимами и их («фенотипическими») эффектами. И он повторяет вновь и вновь важность коадаптированных мимо-комплексов, в которые мимы отбираются по их взаимной совместимости.

id="note11.4">

[11.4]

«Auldbang Syne» («Старая дружба»).

Пример «Auld Lang Syne», выбранный мной совершенно непреднамеренно, оказался удивительно удачным. Это связано с тем, что почти повсеместно эта песня исполняется с ошибкой — с мутацией. В наши дни припев почти всегда звучит «For the sake of auld lang syne», тогда как Бернс на самом деле написал: «For auld lang syne». Дарвинист, увлеченный идеей мимов, немедленно задумается, чем объясняется «выживаемость» вставленных слов «the sake of». Помните, что нас интересуют не способы, повышающие выживание людей благодаря тому, что они исполнили песню в измененной форме. Мы стараемся понять, почему само это изменение могло оказаться способным выжить в мимофонде. Все выучивают эту песню в детстве не потому, что читают Бернса, а потому, что слышат, как ее поют в сочельник. Вероятно, когда-то все пели ее, произнося только слова, написанные Бернсом. Добавление слов «the sake of», наверное, возникло как редкая мутация. Спрашивается, почему мутация, бывшая вначале редкой, распространилась так коварно, что стала нормой в мимофонде?

Мне кажется, что найти ответ не очень сложно. Свистящее «s» звучит очень назойливо. Церковных певчих специально тренируют, заставляя их произносить все «s» как можно легче, так как иначе вся церковь наполнится шипением от эхо. В большом соборе бормотание священника в алтаре доносится до задних рядов нефа лишь как отдельные свистящие «s». Другое согласное в «sake», т. е. «k», слышится почти столь же отчетливо. Представьте себе, что девятнадцать человек правильно поют «For auld lang syne», а один из какого-то угла комнаты пропел с ошибкой «For the sake of auld lang syne». Ребенок, услышавший эту песню впервые, очень хочет присоединиться к поющим, но не уверен в словах. Хотя почти все поют «For auld lang syne», шипящее «s» и обрубленное «k» застревают в ушах ребенка, и когда дело вновь доходит до припева, он также поет «For the sake of auld lang syne». Мутантный мим занял еще один экипаж. Если среди присутствующих есть другие дети или взрослые, нетвердо знающие слова, то в следующий раз они с большей вероятностью выберут мутантную форму припева. Это вовсе не означает, что они «предпочитают» мутантную форму. Они действительно не знают слов и искренне хотят выучить их. Даже если те, кто твердо сознает свою правоту, орут во весь голос «For auld lang syne» (как это делаю я!), в правильных словах, увы!, нет выразительных согласных, и мутантный вариант, даже если он пропет негромко и робко, расслышать гораздо легче.

Сходное положение сложилось с гимном «Rule Britannia» («Правь, Британия»). Правильный текст второй строки припева — «Britannia, rule the waves» («Британия, правь морями»). Часто, хотя и не всегда, вместо этого поют «Britannia rules the waves» («Британия правит морями»). Здесь настойчиво шипящему «s» мима помогает дополнительный фактор. Поэт (Джеме Томпсон), очевидно, придавал этим словам повелительный оттенок: «Britannia, go out and rule the waves» («Британия, вперед и правь морями») или, возможно, сослагательный «Let Britannia rule the waves» («Пусть Британия правит морями»). Однако при поверхностном восприятии это предложение представляется изъявительным: «Britannia, as a matter of fact, does rule the wave» («Британия в самом деле правит морями»). Таким образом, этот мутантный мим превосходит первоначальную форму по двум отдельным ценностям для выживания: он звучит более убедительно и его легче понять.

Окончательным судьей любой гипотезе должен быть эксперимент. Следует найти возможность преднамеренно ввести шипящий мим в мимофонд при очень низкой частоте, а затем наблюдать, как он распространяется благодаря своей собственной ценности для выживания. А что, если всего несколько человек начнут петь: «Господь спасает нашу милостивую королеву»? («God saves our gracious Queen».)

id="note11.5">

[11.5]

Если данный мим представляет собой научную идею, то его распространение будет зависеть от того, сколь приемлема эта идея для популяции ученых; приблизительную оценку ее выживаемости может дать подсчет ссылок на нее в научных журналах за ряд лет.

Мне совсем не хотелось бы, чтобы это было воспринято так, будто единственным критерием принятия какой-либо научной идеи служит ее «заразительность». Ведь в конечном счете одни научные идеи бывают верны, а другие ошибочны. Их верность или ошибочность можно проверить; их логику можно критически разобрать. Это ведь не шлягеры, не религиозные течения и не прически панков. Тем не менее науке присуща своя социология и своя логика. Некоторые неудачные научные идеи могут широко распространяться, по крайней мере в течение некоторого времени. А некоторые хорошие идеи лежат без движения годами, пока, наконец, за них не ухватятся и они не завладеют воображением ученых.

Прекрасным примером такой спячки с последующим бурным распространением служит судьба одной из главных идей этой книги — гамильтоновской теории кин-отбора. Я счел эту теорию подходящим примером для того, чтобы проверить, можно ли измерять распространение мима путем подсчета цитирований в журналах. В первом издании (с. 90) я заметил, что «две его [Гамильтона] статьи, опубликованные в 1964 г., относятся к числу. самых важных вкладов в социальную этологию среди когда-либо написанных работ, и я никак не мог понять, почему этологи так пренебрегают ими (его имя даже не упоминается в указателях двух главных учебников по этологии, опубликованных в 1970 г.). К счастью, за последнее время появились некоторые признаки пробуждения интереса к его идеям». Я писал это в 1976 г. Попробуем проследить за оживлением интереса к этому миму за последующее десятилетие.

Science Citation Index (Указатель цитирования в научных изданиях) — довольно странное издание, в котором можно найти ссылку на любую опубликованную статью и где сведено в таблицы (по годам) число последующих публикаций, в которых она цитировалась. Назначение «Указателя» — помочь в поисках литературы по той или иной теме. Университетские комиссии, ведающие приемом на работу, используют его как приближенный и легкий (слишком приближенный и слишком легкий) способ сопоставления научных достижений претендентов на данную должность. Подсчитывая число ссылок на работы Гамильтона по годам, начиная с 1964 г., можно приблизительно проследить за проникновением его идей в сознание биологов (рис. 1). На графике явно виден начальный латентный период. Затем в семидесятые годы наблюдается резкое повышение интереса к кин-отбору, начавшееся, по-видимому, между 1973 и 1974 г.дами. Это повышение набирает темпы, достигает пика в 1981 г., после чего число цитирований колеблется вблизи некоторого плато.

Родился мимический миф о том, что быстрое повышение интереса к кин-отбору подстегивалось книгами, выпущенными в 1975 и 1976 г.. График, где резкое повышение приходится на 1974 г., по-видимому, опровергает это. Зато имеющиеся данные можно использовать как довод в пользу совсем другой гипотезы, а именно, что мы здесь имеем дело с одной из тех идей, которые «носились в воздухе», «чье время настало». С этой точки зрения книги середины семидесятых годов скорее симптомы этого повального увлечения, чем его первопричина.

Быть может, мы действительно имеем дело с длительным, медленно начинавшимся, ускоряющимся по экспоненте повальным увлечением, зародившимся гораздо раньше. Один из способов проверить эту простую экспоненциальную гипотезу состоит в построении кумулятивного графика цитирования в логарифмическом масштабе. Любой процесс роста, при котором скорость роста пропорциональна уже достигнутым размерам, называют экспоненциальным. Типичным примером экспоненциального роста служит эпидемия: каждый больной, выдыхая вирус, заражает несколько других людей, а каждый из этих других в свою очередь таким же путем заражает еще нескольких; в результате число жертв увеличивается со все возрастающей скоростью. Характерная особенность экспоненциальной кривой состоит в том, что в логарифмическом масштабе она превращается в прямую. Такие логарифмические кривые обычно бывает удобно строить кумулятивным образом, хотя в этом и нет необходимости. Если мим Гамильтона действительно распространялся подобно набирающей силу эпидемии, то все точки кумулятивного логарифмического графика должны лечь на одну прямую. Так ли это?

График, изображенный на рис. 2, это и есть та прямая, которая представляет собой результат наилучшей в статистическом смысле подгонки ко всем точкам. Заметным резким ростом между 1966 и 1967 г.дами следует, вероятно, пренебречь как несущественным эффектом при малых значениях логарифма, который еще и усиливается логарифмическим масштабом. Для остальной части графика изображенная прямая является неплохим приближением, несмотря на то, что некоторые точки из нее выпадают. Если принять мою экспоненциальную интерпретацию, то мы здесь имеем дело с единичным всплеском интереса, начавшимся в 1967 г. и продолжавшим медленно нарастать до восьмидесятых годов. Отдельные книги и статьи следует рассматривать как симптомы и одновременно причины этого длительного процесса.

Отметим, между прочим, что не следует считать такого рода возрастание чем-то тривиальным в смысле его неизбежности. Любая кумулятивная кривая, конечно, всегда возрастала бы, даже если бы частота цитирования из года в год оставалась постоянной. Но в логарифмическом масштабе она будет возрастать все медленнее, выходя на плато. Верхняя кривая на рис. 3 — это теоретическая кривая, которую мы получили бы в том случае, если бы частота цитирования была из года в год одинаковой (равной фактической средней частоте цитирования работ Гамильтона — примерно 37 в год). Эту выходящую на плато кривую можно непосредственно сравнить с прямой на рис. 2, отражающей реальные данные, из которой видно, что возрастание идет по экспоненте. Перед нами в самом деле случай ускорения возрастания, а не постоянной частоты цитирования.

Кроме того, может появиться соблазнительная мысль, что в экспоненциальном росте есть что-то, если не неизбежное, то по крайней мере такое, чего можно было ожидать. Разве не происходит экспоненциальный рост числа научных публикаций вообще, а тем самым и возможностей для цитирования работ других авторов? Возможно, возрастает по экспоненте и число ученых. Простейший способ показать, что гамильтоновский мим-случай особый, состоит в построении аналогичного графика для каких-нибудь других работ. На рис. 3 представлены также логарифмы кумулятивных частот цитирования трех других работ (которые также оказали большое влияние на первое издание этой книги). Это книга Уильямса «Адаптация и естественный отбор» (Williams, 1966), статья Трайверса (Trivers, 1971) о реципрокном альтруизме и статья Мэйнарда Смита и Прайса (Maynard Smith, Price, 1973), в которой излагается идея об ЭСС. Все три кривые, совершенно очевидно, не являются экспоненциальными на всем временном интервале. Однако и для этих работ частота цитирования по годам далеко не однородна и на некоторых отрезках области определения может быть даже экспоненциальной. Например, график для работы Уильямса, построенный в логарифмическом масштабе, представляет собой приблизительно прямую, начиная примерно от 1970 г.; это позволяет предположить, что влияние этой работы также стало резко возрастать с этого момента.

Я преуменьшил влияние некоторых книг на распространение гамильтоновского мима. Тем не менее к этой небольшой попытке «мимического анализа» можно дать постскриптум, наводящий на размышления. Как и в примерах с «Auld lang syne» и «Rule Britannia», здесь также замешана поучительная мутантная ошибка. Правильное название двух статей, опубликованных Гамильтоном в 1964 г., — «Генетическая эволюция социального поведения». С середины и до конца семидесятых годов в потоке публикаций, в том числе в моих «Социобиологии» и «Эгоистичном гене», эти статьи упоминались под ошибочным названием «Генетическая теория социального поведения». Ион Седжер (Jon Seger) и Пол Харви (Paul Harvey) попытались выявить момент самого первого появления этого мутантного мима, полагая, что он послужит надежным маркером, почти как радиоактивная метка, для того чтобы установить, как этот мим распространялся в научной литературе. Оказалось, что впервые он был использован в авторитетной книге Е. Уилсона «Социобиология», причем были обнаружены некоторые косвенные доказательства этого предполагаемого происхождения.

Как я ни восхищаюсь замечательной книгой Уилсона — я бы хотел, чтобы люди больше читали его книгу и меньше читали о ней, — я всегда был готов ринуться в бой, услышав совершенно ошибочное предположение, что его книга оказала влияние на мою. Все же, поскольку в моей книге также содержится мутантное цитирование — «радиоактивная метка», — дело начало принимать тревожный оборот: создавалось впечатление, что по крайней мере один мим пропутешествовал от Уилсона ко мне! Это не должно было вызвать особого удивления, поскольку «Социобиология» появилась в Англии как раз тогда, когда я заканчивал «Эгоистичный ген», в то самое время, когда я должен был бы трудиться над библиографией. Обширная библиография Уилсона могла бы оказаться даром небес, избавив меня от долгих часов работы в библиотеке. Мое огорчение сменилось поэтому ликованием, когда я случайно напал на старую ротаторную копию библиографии, которую я давал студентам на одной из своих оксфордских лекций в 1970 г. Черным по белому там стояло «Генетическая теория социального поведения» — за целых пять лет до выхода в свет книги Уилсона. Уилсон, очевидно, не имел возможности видеть мою библиографию, составленную в 1970 г. Не вызывает сомнений, что Уилсон и я независимо один от другого ввели один и тот же мутантный мим.

Как могло произойти такое совпадение? И снова, как и в случае с «Auld Lang Syne», нетрудно найти правдоподобное объяснение. Самая знаменитая книга Р. Фишера называется «Генетическая теория естественного отбора». В мире биологов-эволюционистов это заглавие настолько вошло в обиход, что нам трудно услышать два первых слова и не добавить к ним автоматически третье. Я подозреваю, что как Уилсон, так и я именно это и сделали. Подобное заключение очень удачно для всех участников, ибо никто не станет возражать против того, что на него оказывает влияние Фишер.

id="note11.6">

[11.6]

Компьютеры, в которых живут мимы, — это человеческий мозг.

Было совершенно очевидно, что созданные человеком электронные вычислительные машины также в конечном счете станут обиталищем самореплицирующихся единиц (паттернов) информации-мимов. Компьютеры все больше соединяются друг с другом в сложные сети, что позволяет им пользоваться всей имеющейся в этих сетях информацией. Многие из них буквально соединены проводами, образуя сеть компьютерной почты. Другие делятся информацией, когда их владельцы передают друг другу гибкие дискеты. Это идеальная среда для процветания и распространения самореплицирующихся программ. Когда я работал над первым изданием этой книги, я был достаточно наивен, предполагая, что нежелательный компьютерный мим мог возникнуть лишь в результате спонтанной ошибки при копировании отлаженной программы и считал такое событие маловероятным. Боже, как я был невинен! Эпидемии «вирусов» и «червей», умышленно запущенных злонамеренными программистами, теперь стали бедствием, хорошо знакомым пользователям во всем мире. Мой собственный жесткий диск, как мне стало известно, в прошлом году был заражен во время двух вирусных эпидемий — весьма типичная ситуация для тех, кто много пользуется компьютером. Я не стану приводить названия повинных в этом вирусов, чтобы не доставить гадкого мелкого удовольствия гадким мелким преступникам — «технокрысам». Я называю их «гадкими», так как считаю, что в моральном отношении их поведение ничем не отличается от поведения лаборанта в микробиологической лаборатории, который умышленно заражает питьевую воду и вызывает эпидемию, чтобы потом посмеиваться над заболевшими людьми. Я говорю «мелкие», потому что интеллект этих людей не способен ни на что большее. Не надо большого ума, чтобы создать компьютерный вирус. Любой посредственный программист может это сделать, а в современном мире цена таким программистам — пятак за пару. Я и сам таков. Я даже не буду пытаться объяснять, как действуют компьютерные вирусы. Это слишком очевидно.

Труднее понять, как бороться с ними. К сожалению, некоторым очень высококвалифицированным программистам пришлось тратить свое драгоценное время на составление программ для обнаружения вирусов, программ иммунизации и т. п. (аналогия с медицинской вакцинацией, между прочим, удивительна — вплоть до введения «ослабленного штамма» вируса). Опасность состоит в том, что может возникнуть «гонка вооружений», в которой на каждое достижение в антивирусных мерах будут выдвигаться контр-достижения в новых вирусных программах. До сих пор большинство антивирусных программ создавалось альтруистами и предоставлялось бесплатно, в порядке одолжения. Но я предвижу расцвет целой новой профессии — выделение доходной специальности, подобно любой другой, — «программных докторов», являющихся по вызову, с черными сумками, полными диагностических и лечебных гибких дискет. Я называю их «докторами», однако настоящие врачи решают естественные проблемы, а не проблемы, намеренно созданные людской злобой. В отличие от них, мои «программные доктора» будут, подобно юристам, разрешать проблемы, созданные человеком, которые просто никогда не должны были бы возникнуть. Поскольку действия «технокрыс» должны иметь хоть какие-то побудительные причины, я подозреваю, что сами эти люди несколько склонны к анархизму. Поэтому я обращаюсь к ним: неужели вы в самом деле хотите создать условия для новой очень прибыльной профессии? Если вы этого не хотите, прекратите игру в глупые мимы и направьте свои скромные программистские таланты на что-то более полезное.

id="note11.7">

[11.7]

Слепая вера может оправдать все, что угодно.

На меня обрушился, как и следовало предвидеть, поток писем от жертв веры, протестующих против моей критики. Вера — это такое успешное промывание мозгов (в особенности детских) в интересах самой веры, что перебороть ее влияние трудно. Но что же такое вера? Это некое состояние ума, заставляющее людей верить во что-то — неважно, во что, при полном отсутствии подтверждающих данных. Если бы имелись надежные доказательства, то вера как таковая была бы излишней, так как эти доказательства убеждали бы нас сами по себе. Именно поэтому часто повторяемое утверждение, что «сама эволюция — это вопрос веры», звучит так глупо. Люди верят в эволюцию не потому, что они решили верить в нее, а потому, что о ее существовании свидетельствует огромное количество общедоступных данных.

Я говорю «неважно, во что» верить, подсказывая, что люди готовы верить в совершенно нелепые случайные вещи, как электрический монах в восхитительной книжке Дагласа Адамса «Холистическое детективное агентство Дерка Джентли». Дерк Джентли был создан специально для того, чтобы верить за вас и делал это очень успешно. В тот день, когда мы с ним встречаемся, он непоколебимо верит, вопреки всякой очевидности, что в все в мире окрашено в розовый цвет. Я не хочу утверждать, что все то, во что верит тот или иной индивидуум, непременно нелепо. Оно может быть, а может и не быть нелепым. Суть в том, что установить это невозможно, равно как невозможно отдать предпочтение одному объекту веры перед другим, поскольку все откровенно избегают предъявления каких бы то ни было доказательств. В сущности тот факт, что истинная вера не нуждается в доказательствах, считается главной добродетелью верующих; именно поэтому я рассказал о Фоме Неверном — единственном среди двенадцати апостолов, заслуживающим одобрения.

Вера не может сдвигать горы (хотя многим поколениям детей торжественно внушают обратное и они верят в это). Но вера способна подвигнуть человека на такие опасные безрассудства, что она представляется мне своего рода психическим заболеванием. Она может достигать такой силы, что в экстремальных случаях люди готовы убивать и умирать за веру, не ощущая потребности в каких-либо оправданиях. Кейт Хэнсон (Keith Henson) придумала название «мимеоиды» для «людей, которых какой-то мим увлек до такой степени, что их собственная жизнь стала казаться им ничего не значащей… Множество таких людей можно увидеть в вечерних новостях из таких мест, как Белфаст или Бейрут». Вера может быть достаточно сильной, чтобы сделать людей невосприимчивыми ко всем призывам к жалости, прощению, к благородным человеческим чувствам. Она заставляет их даже утратить чувство страха, если они искренне верят, что мученическая смерть вознесет их прямо на небеса. Что за оружие! Религиозная вера заслуживает отдельной главы в анналах военной техники, на равных правах с луком, боевым конем, танком и водородной бомбой.

id="note11.8">

[11.8]

Мы — единственные существа на Земле, способные восстать против тирании эгоистичных генов.

Оптимистический тон моего заключения вызвал скепсис среди критиков, которым кажется, что он не соответствует содержанию остальной части книги. В некоторых случаях критика исходит от социобиологов-доктринеров. ревниво отстаивающих важность генетического влияния. В других случаях критика парадоксальным образом исходит от противоположной стороны — от верховных жрецов левого толка, защищающих любимую демонологическую икону. У Роуза, Кеймина и Левонтина (Rose, Kamin, Lewontin) в книге «Not in Our Genes» имеется собственное пугало, называемое «редукционизмом»; а принято считать, что все лучшие редукционисты являются одновременно «детерминистами», предпочтительно «генетическими детерминистами».

Мозги — для редукционистов — это определенные биологические объекты, от свойств которых зависят наблюдаемое нами поведение и состояния мышления или намерения, выводимые нами из этого поведения… Такая позиция находится или должна находиться в полном соответствии с законами социобиологии, выдвигаемыми Уилсоном и Докинзом. Если, однако, они ее примут, это поставит их перед дилеммой: прежде всего им придется признать врожденность почти всего поведения человека, а это им, свободным людям, явно покажется непривлекательным (презрение, чувство собственного величия и т. п.), а затем они окажутся вовлеченными в либерально-этические заботы об ответственности за противоправные действия, коль скоро эти действия, подобно всем другим действиям, биологически детерминированы. Чтобы избежать этой проблемы, Уилсон и Докинз призывают на помощь свободу воли, которая дает нам возможность идти против диктата наших генов, если мы этого захотим… Это, в сущности, возврат к беззастенчивому картезианству, дуалистическому deux ex machina.

Я думаю, что Роуз и его коллеги обвиняют нас в стремлении добиться того, чтобы и овцы были целы, и волки сыты. Либо мы должны быть «генетическими детерминистами», либо мы верим в «свободу воли»; совместить то и другое невозможно. Однако и здесь я выступаю от имени проф. Уилсона, так же как и от своего собственного, — мы являемся «генетическими детерминистами» только в глазах Роуза и его коллег. Чего они не понимают (очевидно, хотя в это и трудно поверить), как это того, что можно верить в статистическое влияние генов на поведение человека и одновременно допускать возможность изменения этого влияния, его подавления или реверсии под действием других воздействий. Гены должны оказывать статистическое влияние на все типы поведения, возникающие под действием естественного отбора. Роуз и его коллеги, надо полагать, согласятся с тем, что половое влечение у человека возникло под действием естественного отбора в том же смысле, как все на свете всегда эволюционирует под действием естественного отбора. Поэтому они должны согласиться с тем, что имеются гены, оказывающие влияние на половое влечение — в том смысле, что гены всегда воздействуют на все. Тем не менее они сдерживают свое половое влечение, когда этого требует общество. Что в этом двойственного? Совершенно очевидно, что ничего. И не более двойствен мой призыв к восстанию «против тирании эгоистичных репликаторов». Мы, т. е. наш мозг, достаточно обособлены и независимы от наших генов, чтобы восстать против них. Как уже говорилось, мы это делаем, так сказать, «по мелочи», всякий раз, когда прибегаем к противозачаточным средствам. Нет никаких причин к тому, чтобы мы — не могли взбунтоваться и в более широких масштабах.


>

ISBN 5–03–002531–6 (русск.)

© Oxford University Press 1976 ISBN 0–19–286092–5 (англ.)

The Edition © Richard Dawkins 1989

This book was originally published in the English language by Oxford University Press, Oxford, England

© перевод на русский язык, Фомина Н. О., 1993


Глава 6. Генное братство

id="note6.1">

[6.1]

...я никогда не мог понять, почему этологи так пренебрегают этими работами.

Статьи Гамильтона, вышедшие в 1964 г., теперь уже не остаются без внимания. История пренебрежения этими статьями в прошлом и последующего их признания сама по себе представляет интересное количественное исследование — изучение конкретного примера включения «мима» в мимофонд. Я прослежу за развитием этого мима в примечаниях к гл. 11.



[6.2]

Допустим…, что мы рассматриваем гены, редко встречающиеся…

Допущение, что речь идет о гене, редко встречающемся в популяции в целом, было небольшой уловкой, облегчающей измерение коэффициента родства. Одно из главных достижений Гамильтона состояло в том, что его заключения не зависят от того, рассматриваем ли мы редкие или часто встречающиеся гены. Это оказалось тем аспектом теории, который люди воспринимают с трудом.

Проблема измерения коэффициента родства явилась камнем преткновения для многих из нас по следующей причине. Дело в том, что у любых двух представителей данного вида, независимо от того, принадлежат ли они к одной семье или нет, обычно более 90% всех генов одинаковые. Что же мы имеем в виду, когда говорим, что коэффициент родства между родными братьями составляет 1/2, а между двоюродными — 1/8? Только то, что у братьев одинакова 1/2 их генов помимо и сверх тех 90% (или сколько их там есть), которые в любом случае одинаковы у всех индивидуумов. Существует некий базисный коэффициент родства, общий для всех членов данного вида; в сущности, хотя и в меньшей степени, он распространяется и на другие виды. Следует ожидать, что альтруизм будет проявляться по отношению к индивидуумам, коэффициент родства с которыми выше базисного, каким бы он ни был.

В первом издании я обошел эту проблему, ограничив свои рассуждения редкими генами. Это допустимо, пока речь идет о них, но и только. Сам Гамильтон писал о генах, «идентичных по своему происхождению», но это также сопряжено с трудностями, как показал Алан Грейфен (Alan Grafen). Другие авторы даже не признавались в существовании какой-то проблемы, а просто говорили об абсолютных процентах общих генов, что несомненно является ошибкой. Такие небрежные рассуждения привели к серьезным недоразумениям. Например, один уважаемый антрополог в пылу ожесточенных нападок на «социобиологию», опубликованных в 1978 г., пытался утверждать, что если мы принимаем кин-отбор всерьез, то следовало бы ожидать, что все люди должны проявлять друг к другу альтруизм, так как число общих генов превышает у них 99%. Я кратко откликнулся на эту ошибку в моих «Двенадцати недопониманиях кин-отбора» (она идет в них под номером 5). Остальные 11 недоразумений также заслуживают разбора.

Алан Грейфен в своей статье «Геометрический взгляд на коэффициент родства», быть может, дал окончательное решение проблемы коэффициента родства. Я не буду пытаться излагать здесь эту статью.

В другой статье «Естественный отбор, кин-отбор и групповой отбор» Грейфен разъясняет еще одну часто встречающуюся и важную проблему, а именно — широко распространенное неверное использование гамильтоновской концепции «инклюзивной приспособленности». В ней рассмотрены также правильный и ошибочный способы подсчета потерь и преимуществ для генетических родственников.



[6.3]

...броненосцы… Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим.

Никаких дальнейших сведений о броненосцах не сообщалось, но стали известны некоторые новые эффектные данные о другой группе «клонируемых» животных — тлях. Уже давно известно, что тли размножаются как бесполым, так и половым путем. Когда вы видите на каком-нибудь растении скопление тлей, то есть шансы, что все они — члены одного клона идентичных самок, тогда как на соседнем растении могут находиться члены другого клона. Теоретически такие условия идеальны для эволюции альтруизма под действием кин-отбора. Подлинных примеров альтруизма тлей не было известно, однако, до тех пор, пока в 1977 г. японский специалист по тлям Сигеюки Аоки не обнаружил у одного японского вида тлей стерильных «солдат» — слишком поздно, чтобы это могло попасть в первое издание моей книги. Впоследствии Аоки обнаружил это явление у ряда различных видов, и он располагает надежными данными о том, что в процессе эволюции оно независимо возникало по крайней мере четыре раза в разных группах тлей.

Вкратце Аоки установил следующее. «Солдаты» у этих тлей — особая каста, отличающаяся от других по своей анатомии, подобно кастам таких знаменитых общественных насекомых, как муравьи. Это личинки, которые не достигают половой зрелости и поэтому стерильны. Как внешним видом, так и поведением они отличаются от других развивающихся одновременно с ними личинок, которым, однако, они генетически идентичны. Солдаты, как правило, крупнее; у них аномально большие передние ноги, что придает им сходство со скорпионами, а от головы отходят острые рога, направленные вперед. Они пользуются этим оружием, чтобы драться с хищниками и убивать их. В этих стычках они нередко гибнут, но если даже дело не доходит до гибели, мы вправе считать их генетически альтруистичными, потому что они стерильны.

Что же здесь происходит в плане эгоистичных генов? Аоки не уточняет, чем определяется превращение конкретных индивидуумов в стерильных солдат или в нормальных половозрелых тлей, но мы вправе утверждать, что это, очевидно, обусловлено каким-то фактором среды, поскольку стерильные солдаты и нормальные тли, находящиеся на каждом данном растении, генетически идентичны. Однако, по всей вероятности, существуют гены, определяющие способность переключаться под действием среды на тот или другой путь развития. Почему естественный отбор благоприятствовал этим генам, несмотря на то, что некоторые из них попадают в тела стерильных солдат и поэтому не передаются последующим поколениям? Да потому, что благодаря солдатам копии этих самых генов могли сохраниться в телах репродуктивных особей. Разумная причина здесь та же самая, что и у всех общественных насекомых (см. гл. 10), с той разницей, что у таких общественных насекомых, как муравьи и термиты, гены стерильных «альтруистов» имеют лишь статистическую вероятность помочь своим копиям, содержащимся в нестерильных репродуктивных индивидуумах. Солдаты у тлей принадлежат к тому же клону, что и их репродуктивные сестры, которых они благодетельствуют. В некоторых отношениях тли, которых изучает Аоки, служат превосходной иллюстрацией могущества идей Гамильтона, предоставленной самой природой.

Следует ли в таком случае принять тлей в тот особый клуб общественных насекомых, куда по традиции допускались только муравьи, пчелы, осы и термиты? Консервативные энтомологи могли бы забаллотировать их на разных основаниях. У тлей нет, например, долго-живущих старых маток. Кроме того, поскольку тли образуют настоящие клоны, они не более «социальны», чем клетки вашего тела. Это как бы одно животное, кормящееся на данном растении. Просто его тело разделено на физически обособленных тлей, и некоторые из них специализированы к выполнению защитных функций, подобно лейкоцитам в теле человека. Далее, «настоящие» общественные насекомые сотрудничают друг с другом, несмотря на то, что они не являются частями одного и того же организма, тогда как тли Аоки сотрудничают, потому что они составляют единый «организм». Я не могу серьезно относиться к этому семантическому вопросу. Мне кажется, что до тех пор, пока вы понимаете, что происходит среди муравьев, тлей и клеток человека, вы вольны называть или не называть их общественными по собственному усмотрению. Что касается лично меня, то я по ряду причин предпочитаю называть тлей Аоки общественными организмами, а не частями одного организма. У единого организма имеются определенные критические свойства, которыми обладают отдельные тли, но которых нет у клона тлей. Этот вопрос я разобрал в «Расширенном фенотипе», в главе, названной «Вновь открывая организм», а также в новой главе настоящей книги, названной «Длинная рука гена».



[6.4]

Кин-отбор никак нельзя считать особым случаем группового отбора.

Неразбериха с разницей между групповым отбором и кин-отбором не исчезла. Может быть, она даже усилилась. Мои замечания сохраняют силу и они актуальны вдвойне, если не считать того, что из-за небрежности в выборе слов я сам допустил ошибку на с. 102 первого издания этой книги. Я там писал (это одно из немногих мест, которые я изменил в тексте данного издания): «Мы просто ожидаем, что троюродные братья и сестры получат 1/16 того альтруизма, который получили бы потомки или сибсы». Как указал С. Альтман (S. Altmann), совершенно очевидно, что это не так. Это неверно по причине, не имеющей никакого отношения к вопросу, который я пытался обсуждать в то время. Если у данного альтруистичного животного есть пирог, которым он собирается поделиться со своими родственниками, то вовсе не обязательно давать каждому родственнику по куску, определяя величину кусков в соответствии с коэффициентом родства. Это привело бы к абсурду, поскольку все члены данного вида, не говоря о других видах, — это по меньшей мере его отдаленные родственники, каждый из которых мог бы претендовать на тщательно отмеренную крошку! И напротив, если поблизости оказался близкий родственник, то нет причин вообще давать дальнему родственнику хоть сколько-то пирога. Ввиду других осложнений, подобно закону убывающего плодородия, следовало бы отдать весь пирог самому близкому из имеющихся родственников. Я, конечно, хотел сказать следующее: «Мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов», как это сформулировано теперь на с. 95.



[6.5]

Он преднамеренно исключает потомков: они не считаются родственниками!

Я выразил надежду, что Э. Уилсон изменит свое определение кин-отбора в будущих публикациях, с тем чтобы включить потомков в число «родственников». Я с удовольствием сообщаю, что в книге «О человеческой природе» обидные слова «кроме потомков» были в самом деле опущены — я отнюдь не ставлю это себе в заслугу! Уилсон добавляет: «Хотя по определению потомки входят в число родственников, термин кин-отбор обычно используется только в том случае, если под его действие подпадают по крайней мере некоторые другие родственники-братья, сестры или родители». Это, к сожалению меткое, замечание, касающееся обычного употребления данного термина биологами, просто отражает тот факт, что многие биологи все еще не понимают «нутром», в чем истинная суть кин-отбора. Они продолжают ошибочно считать его чем-то излишним и мало понятным, лежащим за пределами обычного «индивидуального отбора» и над ним. Это не так. Кин-отбор следует из базисных допущений неодарвинизма, как ночь следует за днем.



[6.6]

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления…

Ошибочное представление о том, что кин-отбор требует наличия у животных совершенно нереалистичных способностей к вычислениям, неуклонно реанимируется одним поколением ученых за другим. Причем не только молодыми учеными. Книга «Употребление биологии и злоупотребление ею» известного социального антрополога Маршала Салинза (Marshall Sahlins) могла бы скромно оставаться в тени, если бы ее не провозгласили «уничижительной атакой» на «социобиологию». В контексте рассуждений о том, может ли кин-отбор действовать среди людей, следующая выдержка из этой книги чуть ли не слишком хороша, чтобы быть правдой:

Мимоходом следует отметить, что гносеологические проблемы, создаваемые отсутствием лингвистической базы для вычисления r, коэффициентов родства, вырастают в серьезный недостаток теорий кин-отбора. Дело в том, что дробные числа встречаются в очень немногих языках земного шара — лишь в индо-европейских и древних цивилизациях Ближнего и Дальнего Востока, а у так называемых примитивных народов отсутствуют вовсе. Охотники и собиратели растений не умеют считать дальше трех. Я воздерживаюсь от комментариев по еще более сложному вопросу: каким образом животные могут представить себе, почему r (двоюродные сибсы собственной персоной) = 1/8.

Я уже не в первый раз цитирую эту весьма откровенную выдержку и могу также привести свой собственный довольно безжалостный ответ на неё из статьи «Двенадцать недоразумений по поводу кин-отбора»:

К сожалению для Салинза, он поддался искушению «воздержаться от комментариев» по поводу того, как животные могут «представить себе» r. Сама абсурдность мысли, которую он пытался высмеять, должна была насторожить его. Раковина улитки — превосходная логарифмическая спираль, но где же улитка хранит свои таблицы логарифмов? Как она умудряется читать их, если хрусталик ее глаза не имеет «лингвистической базы», чтобы вычислить m, коэффициент преломления? А как зеленые растения «постигают» формулу хлорофилла?

Все дело в том, что если вы начнете думать об анатомии, физиологии или почти любом другом аспекте биологии, а не только о поведении, в таком плане, как Салинз, то вы неизбежно придете к той же самой несуществующей проблеме. Для полного описания эмбрионального развития любой частички тела животного или растения необходимо привлечение сложных математических рассуждений, но это не значит, что само это животное или растение должно быть хорошим математиком! У очень высоких деревьев обычно бывают мощные «контрфорсы», выступающие, подобно крыльям, во все стороны от основания ствола. У каждого данного вида, чем выше дерево, тем относительно крупнее эти подпорки. Общеизвестно, что форма и величина подпорок близки к экономически оптимальным, необходимым для того, чтобы дерево стояло прямо, хотя инженеру понадобились бы довольно сложные математические выкладки, чтобы продемонстрировать это. Салинзу или кому-нибудь другому никогда не пришло бы в голову усомниться в справедливости теории контрфорсов лишь по той причине, что дерево не обладает математической подготовкой, необходимой для проведения соответствующих вычислений. Почему же понадобилось поднимать эту проблему в связи с кин-отбором? Это не может быть вызвано тем, что в данном случае речь идет о поведении, а не об анатомии, потому что существует множество других примеров поведения (я имею в виду поведения, не создаваемого кин-отбором), которые Салинз с радостью признает, не выдвигая свое «гносеологическое» возражение; подумайте, например, о предложенном мной самим примере (с. 97) сложных вычислений, которые в известном смысле каждый из нас должен производить, когда он ловит мяч. Невольно призадумаешься: а не существуют ли социологи, которые целиком согласны с теорией естественного отбора вообще, но которые по совершенно посторонним причинам, коренящимся, возможно, в истории предмета их изучения, отчаянно стремятся найти любой недостаток — какой угодно — именно в теории кин-отбора?



[6.7]

...нам надо подумать, каким образом животные могли бы распознавать своих близких родственников… Мы знаем, кто наши родственники, потому что нам сказали об этом…

После того как было опубликовано первое издание книги, вся проблема узнавания родственников приобрела еще большую популярность. Животные, подобно людям, по-видимому, обладают замечательными способностями отличать родственных особей от неродственных, часто по запаху. В недавно вышедшей книге «Узнавание родственных особей у животных» подводятся итоги тому, что нам теперь известно. Глава о человеке, написанная Памелой Уэллс (Pamela Wells), показывает, что приведенное выше утверждение («Мы знаем, кто наши родственники, потому что нам сказали об этом») следует дополнить: имеются по крайней мере косвенные данные, указывающие на то, что мы способны использовать разного рода несловесные указания, в том числе запах пота наших родственников. Вся эта проблема, по-моему, вмещается в цитате, с которой П. Уэллс начинает свою главу:

«Всех благонадежных товарищей можно распознать по их альтруистичному благоуханию.»

(Э. Каммингз)

Родственникам может понадобиться узнавать друг друга не только по альтруистическим причинам. Они могут также пожелать подвести баланс между аутбридингом и инбридингом, как мы увидим в следующем примечании.



[6.8]

...с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.)

Летальным называют ген, убивающий своего носителя. Рецессивный леталь, подобно любому другому рецессивному гену, оказывает свое действие только в том случае, если он присутствует в двойной дозе. Рецессивные гены сохраняются в генофонде лишь благодаря тому, что большинство индивидуумов, у которых они имеются, содержат их в единичной дозе и поэтому никогда не испытывают их вредного воздействия. Каждый данный летальный ген встречается редко, потому что в тех случаях, когда его частота повышается, он начинает встречаться в паре с собственными копиями и убивает своих носителей. Тем не менее существует, вероятно, множество разного рода летальных генов, и не исключено, что все мы переполнены ими. Существующие оценки числа различных леталей, затаившихся в генофонде человека, варьируют. В некоторых книгах указывается, что на каждого человека приходится в среднем по два летальных гена. При браке случайного мужчины со случайной женщиной шансов на то, что у них окажутся одни и те же летали, пренебрежимо малы, и их дети не пострадают. Но при браке родных брата и сестры или отца со своей дочерью картина зловещим образом изменяется. Какими бы редкими ни были мои рецессивные летали и рецессивные летали моей сестры в популяции в целом, вероятность того, что мы с ней несем одни и те же летали, достаточно велика, чтобы вызывать беспокойство. Если произвести расчеты, то оказывается, что в случае моего брака с родной сестрой на каждый имеющийся у меня рецессивный ген один из восьми наших потомков либо родится мертвым, либо умрет в молодом возрасте. Между прочим, с генетической точки зрения смерть в юношеском возрасте даже еще более «летальна», чем мертворождение: мертворожденный ребенок не требует таких больших затрат времени и энергии от своих родителей. Но как бы мы ни относились ко всему этому, браки между близкими родственниками не просто вредны. Они потенциально катастрофичны. Отбор на активное избегание кровосмешения мог быть таким же сильным, как любое селективное давление, которое измеряли в природе.

Антропологи, возражающие против дарвиновских объяснений избегания кровосмешения, может быть, не подозревали, против какого сильного доказательства в пользу теории Дарвина они выступают. Их аргументы иногда бывают настолько слабыми, что напоминают об особом ходатайстве отчаявшейся защиты. Так, например, они обычно говорят: «Если бы дарвиновский отбор действительно вколотил в нас инстинктивное отвращение к кровосмешению, у нас не было бы нужды запрещать его. Запрет возник лишь потому, что люди испытывают тягу к кровосмешению. Таким образом, закон против кровосмешения не может нести „биологическую“ функцию, он имеет чисто „социальное“ значение». Это возражение напоминает следующее рассуждение: «Автомобилю, в сущности, не нужен противоугонный замок на системе зажигания, поскольку у него есть замки на дверцах. Поэтому замок на системе зажигания не может служить противоугонным устройством; он, вероятно, имеет какое-то чисто ритуальное значение». Кроме того, антропологи любят подчеркивать, что у различных цивилизаций существуют разного рода запреты и даже различные определения кровного родства. Они, по-видимому, считают, что это также подрывает стремление дарвинизма объяснить избегание кровосмешения. Можно было бы, однако, с тем же успехом говорить, что половое влечение не может быть адаптацией в дарвиновском понимании, потому что представители разных цивилизаций предпочитают совершать половой акт в разных позах. Мне представляется весьма вероятным, что избегание кровосмешения у человека, а также у животных, — результат сильного дарвиновского отбора.

Плохо вступать в брак не только с лицами, слишком близкими к вам генетически. Слишком отдаленные скрещивания также могут оказаться нежелательными вследствие генетической несовместимости. Где именно находится золотая середина, предсказать нелегко. Следует ли вступать в брак с двоюродным братом или сестрой? А с троюродными или четвероюродными? Патрик Бейтсон (Patrick Bateson) пытался выяснить для одного вида куропаток, в какой части этого диапазона лежат их предпочтения в отношении брачных партнеров. В экспериментальной установке под названием «Амстердамский аппарат» птицам предлагалось выбрать себе партнера из индивидуумов противоположного пола, выстроившихся за миниатюрными витринами. Они отдавали предпочтение двоюродным сибсам перед родными сибсами и неродственными птицами. Результаты дальнейших экспериментов позволяют считать, что молодые куропатки научаются узнавать особенности членов своего выводка, а затем, в более позднем возрасте, обычно выбирают брачных партнеров, которые достаточно, но не слишком похожи на этих собратьев.

Таким образом, куропатки, очевидно, избегают кровосмешения благодаря отсутствию у всех у них внутреннего вожделения по отношению к тем, с кем они выросли. Другие животные делают это, соблюдая законы сообщества, налагаемые ими правила расселения. Например, у львов молодых самцов выгоняют из родительского прайда, где остаются родственные им самки, которые могли бы соблазнить их, и эти самцы участвуют в размножении только в том случае, если им удается захватить другой прайд. В сообществах шимпанзе и горилл уходят из стада и ищут брачных партнеров в других группах обычно молодые самки. Оба типа расселения, так же как и систему, наблюдаемую у куропаток, можно обнаружить в различных цивилизациях вида Homo sapiens.



[6.9]

Поскольку [хозяевам кукушки] не грозит паразитирование со стороны членов их собственного вида…

Это, вероятно, относится к большинству видов птиц. Тем не менее не следует удивляться тому, что некоторые птицы паразитируют в гнездах собственного вида. И в самом деле, число видов, у которых обнаруживается это явление, постоянно увеличивается, особенно в последнее время, когда для установления родственных связей между видами стали применять новые методы молекулярной биологии. По теории эгоистичного гена это может происходить даже гораздо чаще, чем нам до сих пор было известно.



[6.10]

Кин-отбор у львов

Против взгляда Бертрама на роль кин-отбора как главной движущей силы сотрудничества у львов возражали К. Пакер (C. Packer) и А. Пьюзи (A. Pusey). По их мнению, реципрокный альтруизм по меньшей мере столь же пригоден в качестве объяснения сотрудничества у львов, как и кин-отбор. Вероятно, правы обе стороны. В гл. 12 подчеркивается, что реципрокность («око за око») может эволюционировать только в том случае, если изначально будет создан кворум реципрокаторов. Это обеспечивает достаточную вероятность того, что возможный партнер окажется реципрокатором. Родство, очевидно, представляет собой самый явный способ осуществления этого. Родственники, естественно, часто бывают похожи друг на друга, поэтому даже если в популяции в целом не достигается необходимая критическая частота, она может быть достигнута в пределах данной семьи. Быть может, сотрудничеству у львов было положено начало теми кин-эффектами, на которые указывает Бертрам, и это создало условия, необходимые для того, чтобы отбор благоприятствовал реципрокности. Разногласия относительно львов могут быть разрешены только на основании фактов, а факты, как всегда, говорят нам лишь о данном конкретном случае, не затрагивая общие теоретические положения.



[6.11]

Если C — мой идентичный близнец…

Теперь достаточно широко известно, что идентичные близнецы теоретически так же дороги вам, как дороги себе вы сами — в том случае, если есть гарантия, что это действительно идентичный близнец. Менее широко известно, что то же самое относится к матери, если гарантировано ее единобрачие. Если вы уверены, что ваша мать будет продолжать рожать детей от вашего отца и только от него, то ваша мать генетически так же дорога вам, как ваш идентичный близнец или вы сами. Подумайте о себе как о машине, производящей потомков. В таком случае ваша единобрачная мать-машина, производящая (родных) сибсов, а родные сибсы генетически столь же дороги вам, как и ваши собственные потомки. Конечно, при этом мы пренебрегаем всевозможными практическими соображениями. Например, ваша мать старше вас, хотя повышает это обстоятельство или понижает ее шансы на размножение в будущем по сравнению с вами самим, зависит от конкретных обстоятельств — общего правила здесь сформулировать нельзя.

В этих рассуждениях сделано допущение, что на вашу мать можно положиться в том смысле, что она будет продолжать рожать детей от вашего отца, а не от какого-то другого мужчины. Степень, до которой на нее можно положиться, зависит от системы спаривания данного вида. Если вы принадлежите к виду, для которого обычен промискуитет, то вы, очевидно, не можете быть уверены в том, что потомок вашей матери — ваш родной брат (или сестра). Даже в условиях идеального единобрачия существует одно неустранимое обстоятельство, из-за которого у вашей матери шансов меньше, чем у вас. Ваш отец может умереть. В этом случае ваша мать, как бы она этого ни желала, вряд ли могла бы продолжать рожать от него детей, не правда ли?

Так вот, на самом деле может. Совершенно очевидно, что обстоятельства, при которых это может произойти, представляют большой интерес для теории кин-отбора. Будучи млекопитающими, мы привыкли к мысли, что рождение следует за совокуплением по прошествии определенного и довольно короткого промежутка времени. Мужчина может стать отцом посмертно, но спустя не более девяти месяцев после своей смерти (если не считать оплодотворения замороженной спермой, хранящейся в банках спермы). Однако в нескольких группах насекомых самка хранит в себе в течение всей жизни запас спермы, оплодотворяя ею яйца год за годом, нередко в течение долгого времени после гибели своего брачного партнера. Если вы принадлежите к одному из таких видов, то вы можете потенциально быть совершенно уверены, что ваша мать будет продолжать оставаться надежным «генетическим шансом». У муравьев матка спаривается лишь во время единственного в ее жизни брачного полета, происходящего довольно рано в ее жизни. Затем она сбрасывает крылья и не спаривается больше никогда. Считается, что у многих видов муравьев матка во время брачного полета спаривается с несколькими самцами. Но если вы принадлежите к одному из тех видов, для самок которых характерно только единобрачие, то в генетическом отношении вы можете положиться на свою мать по меньшей мере с такой же уверенностью, как на самого себя. Главное преимущество быть молодым муравьем по сравнению с молодым млекопитающим состоит в том, что для вас не имеет значения, жив ваш отец или мертв (он почти наверное мертв!). Вы можете быть совершенно уверены, что сперма вашего отца продолжает жить после его смерти и что ваша мать может продолжать производить для вас родных братьев и сестер.

Отсюда следует, что если нас интересует эволюционное происхождение заботы, проявляемой братьями и сестрами друг о друге, и таких каст, как солдаты у насекомых, то мы должны отнестись с особым вниманием к тем видам, самки которых запасаются спермой на. всю жизнь. Что касается муравьев, пчел и ос, то они обладают некой генетической особенностью — гаплодиплоидией (см. гл. 10), которая, возможно, определила высокое развитие у них общественного образа жизни. Настоящим примечанием я хочу показать, что гаплодиплоидия — не единственный предрасполагающий фактор.

Хранение запаса спермы в течение всей жизни имеет, возможно, по меньшей мере столь же важное значение. В идеальных условиях эта черта может сделать мать такой же ценной в генетическом отношении и в той же степени заслуживающей «альтруистической» помощи, как и идентичный близнец.



[6.12]

...интересные сведения могут нам сообщить социальные антропологи.

Это замечание теперь вгоняет меня в краску. С тех пор я узнал, что социальным антропологам не только есть что сказать об «эффекте брата матери» — многие из них уже многие годы только об этом и говорят! «Предсказанный» мною эффект — эмпирический факт, наблюдаемый во многих цивилизациях, которые хорошо известны антропологам на протяжении ряда десятилетий. Кроме того, когда я высказал конкретную гипотезу, что «в обществе, в котором супружеская неверность широко распространена, дядья с материнской стороны должны быть более альтруистичны, чем „отцы“, поскольку у них больше оснований быть уверенными в своих родственных связях с ребенком» (с. 83), я, к сожалению, упустил из виду, что Ричард Александер (Richard Alexander) уже высказал эту мысль (примечание об этом я сделал при допечатке тиража первого издания этой книги). Гипотеза была проверена, в том числе самим Александером, с использованием количественных данных, опубликованных в антропологической литературе, и результаты оказались благоприятными.







 

Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх